Skip to main content Accessibility help

Patch antennas utilizing semi-insulating SiC for monolithic integration of the antenna subsystem on a SiC chip

  • Tutku Karacolak (a1), Rooban V. K. G. Thirumalai (a2), Erdem Topsakal (a2) and Yaroslav Koshka (a2)


Semi-insulating (SI) silicon carbide (SiC) was evaluated as a candidate material for dielectric substrate for patch antennas suitable for monolithic antenna integration on a SiC semiconductor chip. Computer simulations of the return loss were conducted to design microstrip patch antennas operating at 10 GHz. The antennas were fabricated using SI 4H-SiC substrates, with Ti-Pt-Au stacks for ground planes and patches. A good agreement between the experimental results and simulation was obtained. The radiation performance of the designed SiC based patch antennas was as good as that normally achieved from antennas fabricated using conventional RF materials such as FR4 and Rogers. The antennas had the gain around 2 dBi at 10 GHz, which is consistent with the conventional antennas of a similar size.



Hide All
1. Kirschman, R., High Temperature Electronics, Wiley-IEEE Press, 1998.
2. Shields, V. B., “Applications of Silicon Carbide for High Temperature Electronics and Sensors,” NASA Jet Propulsion Laboratory, Tech Briefs, ISSN 0145–319X, March 1996.
3. Cooper, J. A. Jr., “Silicon Carbide Electronic Devices and Integrated Circuits for Extreme Environments,” IEEE Aerospace Conference Proceedings, vol. 4, pp. 25072514, 2004.
4. Karacolak, T., Thirumalai, R. V. K. G., Merrett, J. N., Koshka, Y., and Topsakal, E.Silicon Carbide Antennas for Harsh Environments, ” IEEE Antennas and Wireless Propagation Letters, vol. 12, 2013, pp. 409412, doi: 10.1109/LAWP.2013.2251599.
5. Afroz, S., Thomas, S.W., Mumcu, G., Saddow, S.E., “Implantable SiC based RF antenna biosensor for continuous glucose monitoring,” Sensors, 2013 IEEE, pp.14 (2013.
6. Pozar, D. M., “Microstrip antennas,” Proceedings of the IEEE, vol. 80, no. 1, pp. 7991, Jan. 1992.
7. Yoon, C., Lee, W., Kim, W., Lee, H., and Park, H., “Compact Band-notched Ultra-wideband Printed Antenna Using Inverted L-slit,” Microwave and Optical Technology Letters, vol. 54, no. 1, pp. 143144, Jan. 2012.
8. Kiminami, K., Hirata, A., and Shiozawa, T., “Double-sided Printed Bow-tie Antenna for UWB Communications,” IEEE Antennas and Wireless Propagation Letters, vol. 3, pp. 152153, 2004.
9. Yoon, C., Kim, W., Kang, S., Lee, H., and Park, H., “Printed Monopole Antenna on a Thin Substrate for UWB Applications,” Microwave and Optical Technology Letters, vol. 53, no. 6, pp. 12621264, June 2011.
10. Krishnan, B.. Kotamraju, S. P., Melnychuk, G., Das, H., Merrett, J. N., and Koshka, Y., “Heavily Aluminum-Doped Epitaxial Layers for Ohmic Contact Formation to p-type 4H-SiC Produced by Low-Temperature Homoepitaxial Growth,” Journal of Electronic Materials, vol. 39, no. 1, pp. 3438, 2010.
11. Koshka, Y., “Method for Epitaxial Growth of Silicon Carbide at Reduced Temperatures,” U.S. Patent 7404858, July 29, 2008.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed