Skip to main content Accessibility help
×
Home

Passivation of GaAs by Electrochemical Sulfur Treatments

  • J. Yota (a1), V. A. Burrows (a1) and S. Guha (a2)

Abstract

Simple chemical sulfur treatments of GaAs have been shown to passivate the GaAs surface. These treatments result in lower surface state density, lower surface recombination velocity, and shifting or unpinning of the Fermi level, in addition to improvement in the performance of GaAs devices. Electrochemical sulfur treatment, however, has only recently been explored and pursued as a method of growing anodic surface layers which have good passivating characteristics on semiconductors. In this study, using surface infrared reflection spectroscopy (SIRS), x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy, we have investigated the electrochemical sulfidation of GaAs as a method to produce a GaAs surface that has good electronic properties and is stable chemically and electronically. We have found that anodic treatments with Na2S and (NH4)2S solutions resulted in the removal of the pre-existing oxide of GaAs and in the formation of films comprising sulfur, sodium carbonate, ammonium thiosulfate, and various sulfide and sulfur-oxygen compounds of arsenic. The surface state density of this anodically treated surface was significantly better than that of untreated GaAs. Rinsing the GaAs with water removed the bulk of the film, leaving behind a surface on which only arsenic sulfide was detected. The surface state density after rinsing has degraded slightly, however, but it was still better than that of an untreated GaAs.

Copyright

References

Hide All
[1] Yablonovitch, E., Sandroff, C. J., Bhat, R., and Gmitter, T., Appl. Phys. Lett. 51, 439 (1987).
[2] Fan, J. F., Oigawa, H., and Nannichi, Y., Jpn. J. Appi. Phys. 27, L1331 (1988).
[3] Carpenter, M. S., Melloch, M. R., Lundstrom, M. S., and Tobin, S. P., Appl. Phys. Lett. 52, 2157 (1988).
[4] Besser, R. S. and Helms, C. R., Appl. Phys. Lett. 52, 1707 (1988).
[5] Hasegawa, H., Ishii, H., Sawada, T., Saitoh, T., Konshi, S., Liu, Y., and Ohno, H., J. Vac. Sci. Technol. B 6, 1184 (1988).
[6] Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).
[7] Fan, J. F., Kurata, Y., and Nannichi, Y., Jpn. J. Appl. Phys. 28, 2255 (1989).
[8] Mauk, M. G., Xu, S., Arent, D. J., Mertens, R. P., and Borghs, G., Appl. Phys. Lett., 54, 213 (1989).
[9] Kamiyama, S., Mori, Y., Takahashi, Y., and Ohnaka, K., Appl. Phys. Lett. 58, 2595 (1991).
[10] Tiedje, T., Wong, P. C., Mitchell, K. A. R., Eberhardt, W., Fu, Z., and Sondericker, D., Solid State Commun. 70, 355 (1989).
[11] Zhu, J., Hou, X., Ding, X., Jin, X., and Chen, P., Chinese Phys. 12, 753 (1992).
[12] Sandroff, C. J., Hedge, M. S., and Chang, C. C., J. Vac. Sci. Technol. B 9, 841 (1989).
[13] Shin, J., Geib, K. M., and Wilmsen, C. W., J. Vac. Sd. Technol. B 7, 2337 (1991).
[14] Spindt, C. J., Liu, D., Miyano, K., Meissner, P. L., Chiang, T. T., Kendelewics, T., Lindau, I., and Spicer, W. E., Appl. Phys. Lett. 55, 861 (1989).
[15] Tiedje, T., Colbow, K. M., Rogers, D., Fu, Z., and Eberhardt, W., J. Vac. Sci. Technol. B 7, 837 (1989).
[16] Wilmsen, C. W., Kirchner, P. D., Baker, J. M., McInturff, D. T., Pettit, G. D., and Woodall, J. M., J. Vac. Technol. B 6, 1180 (1988).
[17] Wilmsen, C. W., Kirchner, P. D., Woodall, J. M., J. Appl. Phys. 64,3287 (1988).
[18] Wang, Y., Darici, Y., and Holloway, P., J. Appl. Phys. 71, 2746 (1992).
[19] Scimeca, T., Muramatsu, Y., Oshima, M., Oigawa, H., and Nannichi, Y., Phys. Rev. B 44, 12827 (1991).
[20] Skromme, B. J., Sandroff, C. J., Yablonovitch, E., and Gmitter, T., Appl. Phys. Lett. 51, 2022 (1987).
[21] Nemirovski, Y., Burstein, L., and Kidron, I., J. Appl. Phys. 58, 366 (1985).
[22] Nemirovski, Y., Adar, R., Komfeld, A., and Kidron, I., J. Vac. Sci. Technol. A 4, 1986 (1986).
[23] Ziegler, J. P. and Hemminger, J. C., Appl Phys. Lett. 54, 2238 (1989).
[24] Sun, W., Appl. Phys. A 52,75 (1991).
[25] Barbour, J. C., Casalnuovo, S. A., and Kurtz, S. R., Mater. Res. Soc. Symp. Proc. 284 (1993), in press.
[26] Hou, X. Y., Cai, W. Z., He, Z. Q., Hao, P. H., Li, Z. S., Ding, X. M., and Wang, X., Appl Phys. Lett. 60, 2252 (1992).
[27] Yota, J. and Burrows, V. A., J. Vac. Sci. Technol. A 11, (1993), in press; Mater. Res. Soc. Symp. Proc. 282 (1993), in press; Mater. Res. Soc. Symp. Proc. 25a 329 (1992); Mater. Res. Soc. Symp. Proc. 237. 281 (1992).
[28] Lenczycki, C. T. and Burrows, V.A., Thin Solid Films 193/124, 610 (1990).
[29] Barrow, G.M., J. Chem. Phys 21, 219 (1953).
[30] Pouchert, C. J., The Aldrich Library of Infrared Spectra (Aldrich, Milwaukee, WI, 1981).
[31] Miller, F. A. and Wilkins, C. H., Anal. Chem. 24, 1253 (1952).
[32] Farrow, L. A., Sandroff, C. J., and Tamargo, M. C., Appl. Phys. Lett. 51, 1931 (1987).
[33] Sandroff, C. J., Hedge, M. S., Farrow, L. A., Bhat, R., Harbison, J. P., and Chang, C. C., J. Appl. Phys. 67, 586 (1990).
[34] CYConnor, G.M., McDonagh, C. J., Anderson, F. G., Glynn, T. J., Morgan, G. P., Hughes, G. J., Roberts, L., and Henry, M. O., Appl. Surf. Sci. 50, 312 (1991).
[35] Wang, P. D., Foad, M. A., Sotomayor-Torres, C. M., Thoms, S., Watt, M., Cheung, R., Wilkinson, C. D. W., and Beaumont, P., J. Appl. Phys. 71, 3754 (1992).
[36] Wagner, C., Riggs, W. M., Davis, L. E., Moulder, J. F., and Mulllenberg, G. E., Handbook of XRay Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979).

Passivation of GaAs by Electrochemical Sulfur Treatments

  • J. Yota (a1), V. A. Burrows (a1) and S. Guha (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed