Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-19T23:03:02.953Z Has data issue: false hasContentIssue false

Particle-Size Distribution of CdSe Quantum Dots Determined by Photoluminescence Spectroscopy

Published online by Cambridge University Press:  21 February 2011

E.N. Prabhakar
Affiliation:
Francis Bitter National Magnet Laboratory, MIT, Cambridge, MA 02139
C.A. Huber
Affiliation:
Francis Bitter National Magnet Laboratory, MIT, Cambridge, MA 02139
D. Heiman
Affiliation:
Francis Bitter National Magnet Laboratory, MIT, Cambridge, MA 02139
Get access

Abstract

Particle-size distribution effects on the energy levels of semiconductor quantum dots are investigated. By examining the low temperature photoluminescence spectra of microcrystals of the binary semiconductor CdSe embedded in a glass matrix, the distribution of energy levels due to three-dimensional confinement is determined. Calculations of the electron-hole pair ground state energy provide a relation between confinement energy and particle diameter. This allows conversion of the photoluminescence lineshape directly into a distribution of particle radii and facilitates analysis of the observed properties of the material. With extension to other systems the technique can become a valuable tool in the study of semiconductor microparticle composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rossetti, R., Hull, R., Gibson, J.M., and Brus, L.E., J. Chem. Phys. 82, 552 (1985); C.J. Sandroff, D.M. Hwang, and W.M. Chung, Phys. Rev. B33, 5953 (1986).Google Scholar
2. Borrelli, N.F., Hall, D.W., Holland, H.J., and Smith, D.W., J. Appl. Phys. 62, 5299 (1987).Google Scholar
3. Bogomolov, V.N., Poborchii, V.V., Kholodkievich, S.V., and Shagin, S.I., Pis'ma Zh. Eksp. Teor. Fiz. 38, 439 (1983) [Soy. Phys. JETP Lett. 38, 533 (1983)]; Y. Wang and N. Herron, J. Phys. Chem. 91, 257 (1987).Google Scholar
4. Jain, R.K. and Lind, R.C., J. Opt. Soc. Am. 73, 647 (1983).Google Scholar
5. Efros, Al. L. and Efros, A.L., Fiz. Tekh. Poluprovodn. 16, 1209 (1982) [Sov. Phys. Semicond. 16, 772 (1982)]; G.W. Bryant, Phys. Rev. Lett. 59, 1140 (1987).Google Scholar
6. Persans, P.D., Tu, A., Wu, Y.-J., and Lewis, M., J. Opt. Soc. Am. B6, 818 (1989).Google Scholar
7. Brus, L.E., J. Chem. Phys. 80, 4403 (1984); 79, 5566 (1983).Google Scholar
8. Prabhakar, E.N., B.S. Thesis, MIT, 1988 (unpublished).Google Scholar
9. Borrelli, N.F. (private communication).Google Scholar
10. Nuss, M.C., Zinth, W., and Kaiser, W., Appl. Phys. Lett. 49, 1717 (1986), and references therein.Google Scholar
11. Alivisatos, A.P., Harris, A.L., Levinos, N.J., Steigerwald, M.L., and Brus, L.E., J. Chem. Phys. 89, 4001 (1988).Google Scholar