Skip to main content Accessibility help
×
Home

Parameter Optimization of a Microfabricated Surface Acoustic Wave Sensor for Inert Gas Detection*

  • S. Ahuja (a1), A. DiVenere (a2), C. Ross (a1), H. T. Chien (a1) and A. C. Raptis (a1)...

Abstract

This work is related to designing, fabricating, and testing a surface acoustic wave sensor to be used for detecting metastable inert gases, particularly helium. The assembly consists of two microsensor configurations: (a) a reference device with no deposition at the delay line and (b) a sensing device with an Au-activated TiO2 e-beam-deposited thin film on the delay line. The interdigitated transducers and delay lines are fabricated by photolithography techniques on a single Y-cut LiNbo3 substrate oriented for Z-propagation of the acoustic waves. Variation in electrical conductivity of the Au-activated TiO2 film due to exposure to metastable He is translated as a frequency change in the assembly. Various characteristics of the surface acoustic microsensor have been studied to better understand and optimize the variation of acoustic wave velocity and the operating frequency of the microdevice. Methods for the TiO2 thin-film deposition are discussed.

Copyright

Corresponding author

Footnotes

Hide All
*

Work supported by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Industrial Technologies, under Contract W-31–109-ENG-38.

Footnotes

References

Hide All
[1] Martin, S. J., Schweizer, K. S., Schwartz, S. S., and Gunshor, R. L., IEEE Ultrasonics Symposium, pp. 207212 (1984).
[2] Joshi, S. G., Sensors and Actuators, Vol. 44A, pp. 191197 (1994).
[3] Seifert, F., Buist, W.-E., and Ruppel, C., Sensors and Actuators, Vol. 44A, pp. 231239 (1994).
[4] Martin, B. A., Wenzel, S. W., and White, R. M., Sensors and Actuators, Vol. A21–A23, pp. 704708 (1990).
[5] Gatti, E., Palma, A., and Verona, E., Sensors and Actuators, Vol. 4, pp. 4554 (1983).
[6] Hoummady, M. and Hauden, D., Sensors and Actuators, Vol. 44A, pp. 177182 (1994).
[7] Wohltjen, H., Sensors and Actuators, Vol. 5, pp. 307325 (1984).
[8] Watson, G. W., Ketchpel, R. D., and Staples, E. J., IEEE Ultrasonics Symposium, pp. 253256 (1992).
[9] Kupriyanov, L. Yu., Tsivenko, V. I., and Myasnikov, I. A., Zh. Fiz. Khim., Vol. 58, pp. 11561162 (1984).
[10] Kupriyanov, L. Y. and Tsivenko, V. I., Rus. J. Phy. Chem., Vol. 61 (3), pp. 430431 (1987).
[11] Sheldon, J. W., Anderson, E. D., and Hardy, K. A., J. Appl. Phys., Vol. 56 (3), pp. 798800 (1984).
[12] Muller-Fiedler, R., Schlemmer, P., Jung, K., Hotop, H., and Ehrhardt, H., J. Phys. B: At. Mol. Phys., Vol. 17, pp. 259268 (1984).
[13] Ahuja, S., Hersam, M., Ross, C., Chien, H.-T., and Raptis, A. C., IEEE Ultrasonics Symposium (1996).
[14] Bianchi, L., JOM, pp. 4547 (1991).
[15] Pulkner, H. K., Paesold, G., and Ritter, E., Appl. Opt., Vol. 15, pp. 29862991 (1976).

Parameter Optimization of a Microfabricated Surface Acoustic Wave Sensor for Inert Gas Detection*

  • S. Ahuja (a1), A. DiVenere (a2), C. Ross (a1), H. T. Chien (a1) and A. C. Raptis (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed