Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-24T10:35:21.378Z Has data issue: false hasContentIssue false

Paper-Like Display Utilizing Organic Electroluminescent Diodes Fabricated on 10 Micron-Thick Polyimide Films

Published online by Cambridge University Press:  11 February 2011

Yutaka Ohmori
Affiliation:
Osaka University, Collaborative Research Center for Advanced Science and Technology (CRCAST), 2–1 Yamada-Oka, Suita, Osaka 565–0871, JAPAN
Hirotake Kajii
Affiliation:
Osaka University, Collaborative Research Center for Advanced Science and Technology (CRCAST), 2–1 Yamada-Oka, Suita, Osaka 565–0871, JAPAN
Takayuki Taneda
Affiliation:
Osaka University, Collaborative Research Center for Advanced Science and Technology (CRCAST), 2–1 Yamada-Oka, Suita, Osaka 565–0871, JAPAN
Makoto Hikita
Affiliation:
NTT Advanced Technology Corp. 162 Srakata-Shirane, Tokai, Ibaraki 319–1193, JAPAN
Hisataka Takenaka
Affiliation:
NTT Advanced Technology Corp. 162 Srakata-Shirane, Tokai, Ibaraki 319–1193, JAPAN
Get access

Abstract

An organic light emitting device (OLED) has been successfully fabricated on a thin paper-like polyimide substrate (about 10 μm-thick), which is sandwiched between silicone oxide and silicone nitride films. The emission characteristics of the OLEDs, which consist of diamine derivative (α-NPD) and 8-hydroxyquinoline aluminum (Alq3), are similar to those fabricated on a conventional glass substrate. Since the substrates and the OLEDs are very thin like a paper, the devices can be applicable for paper-like displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tang, C. W., VanSlyke, S. A., and Chen, C. H., J. Appl. Phys., 65, 3610 (1989).Google Scholar
Kido, J. and Iizumi, Y., Appl. Phys. Lett., 73, 2721 (1998).Google Scholar
3. Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E., and Forrest, S. R., Appl. Phys. Lett., 75, 4 (1999).Google Scholar
4. Tsutsui, T., Yang, M-J., Yahiro, M., Nakamura, K., Watanabe, T., Tsuji, T., Fukuda, Y., Wakimoto, T., and Miyaguchi, S., Jpn. J. Appl. Phys., 38, L1502 (1999).Google Scholar
5. Gustafsson, G., Cao, Y., Tracy, G. M., Klavetter, F., Colaneri, N., and Heeger, A. J., Nature, 357, 477 (1992).Google Scholar
6. Ohmori, Y., Hikita, M., Kajii, H., Tsukagawa, T., Yoshino, K., Ozaki, M., Fujii, A., Tomaru, S., Imamura, S., Takenaka, H., Kobayashi, J., and Yamamoto, F., Thin Solid Films, 393, 267 (2001).Google Scholar
7. Kajii, H., Tsukagawa, T., Taneda, T., Yoshino, K., Ozaki, M., Fujii, A., Hikita, M., Tomaru, S., Imamura, S., Takenaka, H., Kobayashi, J., and Yamamoto, F., Jpn. J. Appl. Phys., 41, 2746 (2002).Google Scholar