Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T09:55:25.063Z Has data issue: false hasContentIssue false

P-And N-Type Implantation Doping Of GaN With Ca And O

Published online by Cambridge University Press:  15 February 2011

J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
R. G. Wilson
Affiliation:
Hughes Research Laboratory, Malibu CA 90265
S. J. Pearton
Affiliation:
University of Florida, Depart. of Materials Science and Engineering, Gainesville, FL 32611
R. A. Stall
Affiliation:
Emcore Corp., Somerset, NJ 0887
Get access

Abstract

III-N photonic devices have made great advances in recent years following the demonstration of doping of GaN p-type with Mg and n-type with Si. However, the deep ionization energy level of Mg in GaN (∼160 meV) limits the ionized of acceptors at room temperature to less than 1.0% of the substitutional Mg. With this in mind, we used ion implantation to characterize the ionization level of Ca in GaN since Ca had been suggested by Strite [1] to be a shallow acceptor in GaN. Ca-implanted GaN converted from n-to-p type after a 1100°C activation anneal. Variable temperature Hall measurements give an ionization level at 169 meV. Although this level is equivalent to that of Mg, Ca-implantation may have advantages (shallower projected range and less straggle for a given energy) than Mg for electronic devices. In particular, we report the first GaN device using ion implantation doping. This is a GaN junction field effect transistor (JFET) which employed Ca-implantation. A 1.7 µm JFET had a transconductance of 7 mS/mm, a saturation current at 0 V gate bias of 33 mA/mm, a ft of 2.7 GHz, and a fmax of 9.4 GHz. 0-implantation was also studied and shown to create a shallow donor level (∼25 meV) that is similar to Si. SIMS profiles of as-implanted and annealed samples showed no measurable redistribution of either Ca or0inGaNat 1125°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Strite, S., Jpn. J. Appl. Phys. 33, L699 (1994).Google Scholar
[2] Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett., 64, 1687 (1994).Google Scholar
[3] Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K., J. Lumin. 48/49, 666 (1991).Google Scholar
[4] Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Electronics Lett., 30, 1248 (1994).Google Scholar
[5] Khan, M. A., Kuznia, J. N., Olsen, D. T., Schaff, W. J., Burro, J. W., and Shur, M. S., Appl. Phys. Lett., 65, 1121 (1994).Google Scholar
[6] Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
[7] Chow, T. P. and Tyagi, R., IEEE Trans. Electron. Dev., 41, 1481 (1994).Google Scholar
[8] Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jap. J. Appl. Phys. 28 L2112 (1989).Google Scholar
[9] Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jap. J. Appl. Phys. 31 L139 (1992).Google Scholar
[10] Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 31, 2883 (1992).Google Scholar
[11] Kim, J. G., Frenkel, A. C., Liu, H., and Park, R. M., Appl. Phys. Lett.65 91 (1994).Google Scholar
[12] Pearton, S. J., Vartuli, C. B., Zolper, J. C., Yuan, C., Stall, R. A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
[13] Zolper, J. C., Crawford, M. Hagerott, Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Yuan, C., and Stall, R. A., J. Elec. Mat. 25, 839 (1996).Google Scholar
[14] Chung, B-C. and Gershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
[15] Sato, H., Minami, T., Yamada, E., Ishii, M., and Takata, S., J. Appl. Phys. 75, 1405 (1994).Google Scholar
[16] Yuan, C., Salagaj, T., Gurary, A., Zawadzki, P., Chem, C. S., Kroll, W., Stall, R. A., Li, Y., Schurman, M., Hwang, C.-Y., Mayo, W. E., Lu, Y., Pearton, S. J., Krishnankutty, S., and Kolbas, R. M., J. Electrochem. Soc. 142, L163 (1995).Google Scholar
[17] Zolper, J. C., Wilson, R. G., , S., Pearton, J., and Stall, R. A., Appl. Phys. Lett. 68, 1945 (1996).Google Scholar
[18] Molnar, R. J., Lei, T., and Moustakas, T. D., Appl. Phys. Lett. 62,72 (1993).Google Scholar
[19] Zolper, J. C., Crawford, M. Hagerott, Howard, A. J., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Yuan, C., Stall, R. A., Ramer, J., Hersee, S. D., Wilson, R. G., Conf Proc. MRS, Fall 1995, symposium AAA (Materials Research Society, Pittsburgh, PA, in press).Google Scholar
[20] Wilson, R. G., Pearton, S. J., Abernathy, C. R., and Zavada, J. M., Appl. Phys. Lett. 66, 2238 (1995).Google Scholar
[21] Zolper, J. C., Shul, R. J.. Baca, A. G., Wilson, R. G., Pearton, S., J., and Stall, R. A., Appl. Phys. Lett. 68, 2273 (1996).Google Scholar
[22] Binari, S. C., Rowland, L. B., Kelner, G., Kruppa, W., Dietrick, H. B., Doverspike, K., and Gaskill, D. K., in Proceedings of 1994 International Symposium on Comp. Semiconductors, San Diego, CA Sept. 1994 (Institute of Physics, Bristol, UK, 1995) pp. 492496.Google Scholar