Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-23T22:39:31.739Z Has data issue: false hasContentIssue false

P- and N-Type Doping of Mbe Grown Cubic GaN/GaAs Epilayers

Published online by Cambridge University Press:  15 February 2011

D.J. As
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Straße 100, D-33095 Paderborn, Germany, d.as@uni-paderborn.de
T. Simonsmeier
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Straße 100, D-33095 Paderborn, Germany, d.as@uni-paderborn.de
J. Busch
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Straße 100, D-33095 Paderborn, Germany, d.as@uni-paderborn.de
B. Schöttker
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Straße 100, D-33095 Paderborn, Germany, d.as@uni-paderborn.de
M. Lübbers
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Straße 100, D-33095 Paderborn, Germany, d.as@uni-paderborn.de
J. Mimkes
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Straße 100, D-33095 Paderborn, Germany, d.as@uni-paderborn.de
D. Schikora
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Straße 100, D-33095 Paderborn, Germany, d.as@uni-paderborn.de
K. Lischka
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Straße 100, D-33095 Paderborn, Germany, d.as@uni-paderborn.de
W. Kriegseis
Affiliation:
Universität Giessen, I. Physik. Inst., Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
W. Burkhardt
Affiliation:
Universität Giessen, I. Physik. Inst., Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
B.K. Meyer
Affiliation:
Universität Giessen, I. Physik. Inst., Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
Get access

Abstract

P-type doping with Mg and n-type doping with Si of cubic GaN (c-GaN) epilayers is reported. Cubic GaN films are grown by if-plasma assisted MBE on semi-insulating GaAs (001) substrates at a substrate temperature of 720°C. Elemental Mg and Si are evaporated from thermal effusions cells. Secondary ion mass spectroscopy (SIMS), low temperature photoluminescence (PL) and temperature dependent Hall-effect measurements are used to study the incorporation, optical and electrical properties. A Mg related shallow donor-acceptor transiton at 3.04 eV with an acceptor activation energy of EA= 0.230 eV is observed by low temperature PL. At Mg concentrations above 1018 cm-3 the dominance of a broad blue band indicates that also in c-GaN Mg is incorporated at different lattice sites or forms complexes. Si-doped c-GaN epilayers are n-type with electron concentrations up to 5*1019 cm-3. The incorporation of Si follows exactly the vapor pressure curve of Si, indicating a sticking coefficient of I for Si in c-GaN. With increasing Si-concentration the intensity of the near-band luminescence continuously increases and broadens.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. As, D.J., Schikora, D., Greiner, A., Lübbers, M., Mimkes, J., and Lischka, K., Phys. Rev. B 54 (16), R11118 (1996)Google Scholar
2. Schikora, D., Hankeln, M., As, D.J., Lischka, K., Litz, T., Waag, A., Buhrow, T. and Henneberger, F.: Phys. Rev. B 54 (12), R8381 (1996)Google Scholar
3. Holst, J., Eckey, L., Hoffmann, A., Broser, I., Schöttker, B., As, D.J., Schikora, D. and Lischka, K.: Appl. Phys. Lett. 72 (12), 1439 (1998)Google Scholar
4. Holst, J., Hoffmann, A., Broser, I., Schöttker, B., As, D.J., Schikora, D. and Lischka, K.: submitted to Appl. Phys. Lett.Google Scholar
5. As, D.J., Schmilgus, F., Wang, C., Schöttker, B., Schikora, D., and Lischka, K.: Appl. Phys. Lett. 70 (10), 1311 (1997)Google Scholar
6. Neugebauer, J., Walle, C.G. Van de, MRS Symp. Proc. Vol. 395, 645 (1996)Google Scholar
7. Leroux, M., Beaumont, B., Grandjean, N., Massies, J., Gibart, P.: MRS Symp. Proc. Vol. 449, 695 (1997)Google Scholar
8. Kaufmann, U., Kunzer, M., Maier, M., Obloh, H., Ramakrishnan, A., Santic, B., Schlotter, P., Appl. Phys. Lett. 72 (11) 1326 (1998)Google Scholar
9. Guha, S., Bojarczuk, N.A., and Cardone, F., Appl.Phys.Lett. 71 (12), 1685 (1997)Google Scholar
10. Wood, C.E.C., Destimone, D., Singer, K., and Wicks, G.W., J.Appl.Phys. 53, 4230 (1982)Google Scholar
11. As, D.J., Simonsmeier, T., Schottker, B., Frey, T., Schikora, D., Kriegseis, W., Burkhardt, W., and Meyer, B.K., Appl.Phys. Lett. 73 (13), 1835 (1998)Google Scholar
12. As, D.J., Phys. Stat. Sol. (b) 210, 2. Dec. (1998)Google Scholar
13. Kim, W., Salvador, A., Botchkarev, A.E., Aktas, O., Mohammad, S.N., and Morcoc, H., Appl. Phys. Lett. 69 (4), 559 (1996)Google Scholar
14. Ridley, B.K., in “Quantum Processses in Semiconductors”, 2nd Ed., Clarendon Press, Oxford, 1988, p.235 Google Scholar
15. Dewsnip, D.J., Orton, J.W., Lacklison, D.E., Flannery, L., Andrianov, A.V., Harrison, I., Hooper, S.E., Cheng, T.S., Foxon, C.T., Novikov, S.N., Ber, B. Ya, and Kudriavtsev, Yu A., Semicond. Sci. Technol. 13, 927 (1998)Google Scholar
16. Eckey, L., Gfug, U. Von, Holst, J., Hoffmann, A., Schineller, B., Heime, K., Heuken, M., Schön, O., Beccard, R., J. of Crystal Growth 189/190, 523 (1998)Google Scholar
17. Abramov, A.P., Abramova, I.N., Verbin, S. Yu., Gerlovin, I. Ya., Grigorév, S.R., Ignatév, I.V., Karimov, O.Z., Novikov, A.B., and Novikov, B.N., Semiconductors 27 (7), 647 (1993)Google Scholar
18. De-Sheng, J., Makita, Y., Ploog, K., Queisser, H.J., J. Appl. Phys. 53 (2), 999 (1982)Google Scholar
19. Souchiere, J.L., Binh, Vu Thien, Surface Science 168, 52 (1986)Google Scholar