Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-12T02:33:17.173Z Has data issue: false hasContentIssue false

Ozone-Based Atomic Layer Deposition of HfO2 and HfxSi1-xO2 and Film Characterization

Published online by Cambridge University Press:  28 July 2011

Yoshihide Senzaki
Affiliation:
AVIZA Technology 440 Kings Village Road, Scotts Valley, CA, 95066, USA
Seung Park
Affiliation:
AVIZA Technology 440 Kings Village Road, Scotts Valley, CA, 95066, USA
Douglas Tweet
Affiliation:
SHARP Laboratories of America, 5700 NW Pacific Rim Blvd., Camas, WA, USA
John F. Conley Jr.
Affiliation:
SHARP Laboratories of America, 5700 NW Pacific Rim Blvd., Camas, WA, USA
Yoshi Ono
Affiliation:
SHARP Laboratories of America, 5700 NW Pacific Rim Blvd., Camas, WA, USA
Get access

Abstract:

New ALD processes for hafnium silicate films have been developed at Aviza Technology by co-injection of tetrakis(ethylmethylamino)hafnium and tetrakis(ethylmethylamino)silicon precursors. Alternating pulses of the Hf/Si precursor vapor mixture and ozone allow process temperatures below 400°C to grow HfxSi1-xO2 films. Film characterization, including film density, crystallinity, and thermal anneal effect, was performed on five 20 nm thick HfxSi1-xO2 films where x = 0.2, 0.4, 0.6, 0.8, 1.0. X-ray measurements revealed the film densities and thicknesses for the as-deposited and 1000°C annealed samples. The densification with anneals seen in the optical measurements were confirmed. The as-deposited amorphous HfO2 and Hf0.8Si0.2O2 were crystallized after a 600°C anneal. The HfO2 formed the well known monoclinic phase while the silicate formed a face-centered-cubic (fcc) structure. This fcc phase has only recently been mentioned in the literature [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

[1] van Dover, R.B., Green, M. L., Manchanda, L., Schneemeyer, L. F., and Siegrist, T., Appl. Phys. Lett. 83, 1459 (2003).Google Scholar
[2] Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys., 89, 5243 (2001).Google Scholar
[3] Senzaki, Y., Hochberg, A. K., and Norman, J. A. T., Adv. Mater. Opt. Electron., 10, 93, (2000).Google Scholar
[4] Senzaki, Y., Hochberg, A. K., and Cuthill, K. S., US Patent, 6,616,972 (2003).Google Scholar
[5] Bastianini, A., Battiston, G. A., Gerbasi, R., Porcia, M., and Daolio, S., J. de Phys. IV, 5, C5525 (1995).Google Scholar
[6] Schaeffer, J., Edwards, N. V., Liu, R., Roan, D., Hradsky, B., Gregory, R., Kulik, J., Duda, E., Contreras, L., Christianses, J., Zollner, S., Tobin, P., Nguyen, B.-Y., Nieh, R., Ramon, M., Rao, R., Hegde, R., Rai, R., Baker, J., and Voight, S., J. Electrochem. Soc., 150, F67 (2003).Google Scholar
[7] Senzaki, Y., Hochberg, A. K., and Norman, J. A. T., US Patent, 6,537,613 (2003).Google Scholar
[8] Senzaki, Y., Hochberg, A. K., Roberts, D. A., Norman, J. A. T., Alers, G. B., and Fleming, R. M., US Patent, 6,500,499 (2002).Google Scholar
[9] Suntola, T., Thin Solid Films, 216, 84 (1992).Google Scholar
[10] Gordon, R. G., Becker, J., Hausmann, D., and Suh, S., Chem. Mater., 13, 2463 (2001).Google Scholar
[11] Gutt, J., Brown, G., Senzaki, Y., and Park, S.G., this conference, paper#D.2.4.Google Scholar
[12] PDF#34-0104, JCPDS International Centre for Diffraction Data (2001).Google Scholar