Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T08:55:00.295Z Has data issue: false hasContentIssue false

Origin of High-Conductivity Layer Near the Surface in As-Grown Diamond Films

Published online by Cambridge University Press:  15 February 2011

Sadanori Yamanaka
Affiliation:
Electrotechnical Laboratory, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan
Kazushi Hayashi
Affiliation:
Electrotechnical Laboratory, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan
Hideyo Okushi
Affiliation:
Electrotechnical Laboratory, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan
Koji Kajimura
Affiliation:
Electrotechnical Laboratory, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

In order to clarify the origin of p-type high-conductivity layers (HCL) near the surfaces of as-grown diamond films prepared by chemical vapor deposition, we have investigated the properties of Schottky junctions fabricated from HCL. The Schottky junctions between Al and HCL of undoped homoepitaxial films with step-flow growth showed high-rectification properties. The forward current-voltage characteristics of the junctions in the temperature range between 83 K and 400 K are found to be described by the thermionic-field emission theory. Analysis indicates that thin enough depletion layer is formed at the junction by a high concentration (∼1018/cm3) of acceptors existing in HCL due to hydrogenation. The origin of HCL is the acceptors related to incorporated hydrogen near the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Landstrass, M. I. and Ravi, K. V., Appl. Phys. Lett. 55, 1391 (1989).Google Scholar
2. Grot, S. A., Gildenblat, G. Sh., Hatfield, C. W., Wronski, C. R., Badzian, A. R., Badzian, T., and Messier, R., IEEE Electron Device Lett. 11, 100 (1990).Google Scholar
3. Maki, T., Shikama, A., Komori, M., Sakaguchi, Y., Sakuta, K., and Kobayashi, T., Jpn. J. Appl. Phys. 31, L1446 (1992).Google Scholar
4. Hayashi, K., Yamanaka, S., Okushi, H., and Kajimura, K., Appl. Phys. Lett. 68, 376 (1996).Google Scholar
5. Kawarada, H., Aoki, M., and Ito, M., Appl. Phys. Lett. 65, 1563 (1994).Google Scholar
6. Albin, S. and Watkins, L., Appl. Phys. Lett. 56, 1454 (1990).Google Scholar
7. Sugino, T., Sakamoto, Y., Furukawa, A., and Shirafuji, J., Mater. Res. Soc. Symp. Proc. 339, 45 (1994).Google Scholar
8. Kawarada, H., Sasaki, H., and Sato, A., Phys. Rev. B52, 11351 (1995).Google Scholar
9. Shiomi, H., Nishibayashi, Y., and Fujimori, N., Jpn. J. Appl. Phys. 30, 1363 (1991).Google Scholar
10. Kiyota, H., Matsushima, E., Sato, K., Okushi, H., Ando, T., Kamo, M., Sato, Y., and lida, M., Appl. Phys. Lett. 67, 3596 (1995).Google Scholar
11. Hayashi, K., Yamanaka, S., Okushi, H., and Kajimura, K., Appl. Phys. Lett. 68, 1220 (1996).Google Scholar
12. Kawarada, H., Aoki, M., Sasaki, H., and Tsugawa, K., Diam. Relat. Mater. 3, 961 (1994).Google Scholar
13. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988) p. 89.Google Scholar
14. Field, J. E., The Properties of Diamond (Academic Press, London, 1979) p. 84.Google Scholar
15. Collins, A. T. and Williams, A. M. S., J. Phys. C4, 1789 (1971).Google Scholar