Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T07:17:37.457Z Has data issue: false hasContentIssue false

Organic-Inorganic Hybrid Materials Processing And Applications

Published online by Cambridge University Press:  10 February 2011

H. K. Schmidt
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, schmidt@inm-gmbh.de
M. Mennig
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, schmidt@inm-gmbh.de
R. Nonninger
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, schmidt@inm-gmbh.de
P. W. Oliveira
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, schmidt@inm-gmbh.de
H. Schirra
Affiliation:
Institut fuer Neue Materialien gem. GmbH, Im Stadtwald, Bldg. 43 A, D-66 123 Saarbruecken, Germany, schmidt@inm-gmbh.de
Get access

Abstract

Hybrid materials as inorganic-organic nanostructured composites require tailored surface chemistry in order to obtain a homogeneous distribution of the nanoparticles in the matrix. For this reason, nanoparticles with organic functions have been synthesized, first, to provide the desired ζ-potential at a given pH value, second, to avoid irreversible agglomeration due to the spacing effect, and third, to provide the appropriate surface chemistry. I could be shown that using this approach, it is possible to switch the ζ-potential of SiO2 nanoparticles from a negative to a positive potential at neutral and to bind DNA fragments to the particles for an effective transfection into cells. Other examples show that nanoparticles (TiO2, SiC2) coated with epoxy and methacryloxy groupings can be used as coating sol for the fabrication of thin films with green densities up to 67 % by volume only by photochemical crosslinking of the polymerizable groupings. Using this approach, interference layers have been fabricated on transparent plastics. In soft matrices, these particles permit to establish appropriate ζ-potentials and in electric fields by electrophoresis, it was possible to up-concentrate them to form gradient index optics. The investigations show that surface chemistry-tailored nanoparticles are a useful tool for the fabrication of nanocomposite hybrids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmidt, H., Seiferling, B., Philipp, G., and Deichmann, K., Development of Organic-Inorganic Hard Coatings by the Sol-Gel Process, in Proc. 3rd International Conference on Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D., (Wiley-Interscience, San Diego, CA, 1987), p. 651660 Google Scholar
2. Reisfeld, R., Theory and application of spectroscopically active glasses prepared by the solgel method, in Sol-Gel optics. SPIE Int. Symp. of Optical and Optoelectronic Tech., edited by Mackenzie, J. D. (SPIE, Bellingham, San Diego, 1990), p. 2939 Google Scholar
3. Altman, J. C., Stone, R. E., Nishida, F., and Dunn, B., Dye Activated ORMOSILs for Lasers and Optical Amplifiers, in Proc. SPIE Int. Soc. Opt. Eng. 1758, Sol-Gel Opt. II, edited by by Mackenzie, J. D. (SPIE, Bellingham, San Diego, 1992) p. 507518 Google Scholar
4. Hou, L., Hoffmann, B., Mennig, M., and Schmidt, H., Preparation and Photochromic Properties of Dye-Doped Aluminosilicate and ORMOCER Gels and Coatings J. Sol-Gel Sci. Tech. 2, p. 635639 (1994).10.1007/BF00486324Google Scholar
5. Hou, L. and Schmidt, H., Photochromic Properties of a Silylated Spirooxazine in Sol-Gel Coatings, Materials letters 27, p. 215218 (1996).10.1016/0167-577X(95)00287-1Google Scholar
6. Kramer, S. J., Mackenzie, J. D., Thermal Stability Enhancement of Rubbery ORMOSILS in Better Ceramics through Chemistry VI, edited by Cheetham, A. K. (Mat. Res. Soc. Symp. Proc. 346, Pittsburgh/PA, 1994), p. 709–14.Google Scholar
7. Schmidt, H., Organically Modified Ceramics, Materials with “History” or “Future”?, in Ultrastructure Processing of Advanced Materials, edited by Uhlmann, D. R. and Ulrich, D. R. (John Wiley and Sons, New York, 1992), p. 409423.Google Scholar
8. LaCourse, W. C., Continous Filament Fibers by the Sol-Gel Process, in: Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Ppecialty Shapes, edited by Klein, L. C., (Noyes Publications, Park Ridge, 1988), p. 184197.Google Scholar
9. Chatry, M., Henry, M., In, M., Sanchez, C. and Livage, J., The Role of Complexing Ligands in the Formation of Non-Aggregated Nanoparticles of Zirconia, J. Sol-Gel Sci. Technol., 1(3), p. 233–40 (1994).10.1007/BF00486166Google Scholar
10. Kasemann, R., Schmidt, H. and Wintrich, E., in Titel Better Ceramics Through Chemistry VI, edited by Cheetham, A. K. (Mat. Res. Soc. Symp. Proc. 346, Pittsburgh/PA, 1994), p. 915921.Google Scholar
11. Wang, B. and Wilkes, G. L., Preparation and Uses of High-Refractive-Index Ceramic-Polymer Hybrid Materials, PCT Int. Appl., Virginia Tech Intellectual Properties, Inc., 1991, pp. 17.Google Scholar
12. Wang, B. and Wilkes, G. L., High Abrasion-Resistance Coating Materials from Organic-Inorganic Hybrid Materials Produced by the Sol-Gel Method, Virginia Tech Intellectual Properties, Inc., 1994, pp. 8.Google Scholar
13. Mark, J. E., The Sol-Gel Route to Inorganic-Organic Composites, Heterog. Chem. Rev. 3(4), p. 307326 (1996).10.1002/(SICI)1234-985X(199612)3:4<307::AID-HCR64>3.0.CO;2-33.0.CO;2-3>Google Scholar
14. Li, C. Y., Tseng, J . Y., Lechner, C., Mackenzie, J. D., Preparation of Metal-Cluster-Ormosil Nanocomposites, in Chemical Processes in Inorganic Materials: Metal and Semiconductor Clusters and Colloids (Mat. Res. Soc. Symp. Proc. 272, Pittsburgh/PA, 1992), p. 133138.Google Scholar
15. Schmidt, H., KONA Powder and Particle, 14, p. 92103 (1996).10.14356/kona.1996015Google Scholar
16. Stem, O. Elektrochem., Z. p. 508 (1924).Google Scholar
17. Nonninger, R., to be published later.Google Scholar
18. Schmidt, H., Arpac, E., Schirra, H., Sepeur, S. and Jonschker, G., Aqueous Sol-Gel Derived Nanocomposite Coating Materials, in Organic/Inorganic Hybrid Materials, edited by Laine, R. M. (Mat. Res. Soc. Symp. Proc. 519, Pittsburgh/PA, 1998), p. 297308.Google Scholar
19. Tang, M. X., Szoka, F. C., The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes, Gene Therapy, 4, p. 823832 (1997).10.1038/sj.gt.3300454Google Scholar
20. Schiestel, T., Schirra, H., Gerwann, J., Lesniak, C., Kalaghi-Nafchi, A., Sameti, M., Borchard, G., Haltner, E., Lehr, C.-M. and Schmidt, H., in Biomaterials Regulating Cell Function and Tissue Development, edited by Thomson, R. C. (Mat. Res. Soc. Symp. Proc. 530, Pittsburgh/PA, 1998), p. 6571.Google Scholar
21. Kneuer, C., Sameti, M., Haltner, E., Schiestel, T., Schirra, H., Schmidt, H., and Lehr, C.-M., New Materials for Gene Delivery: Surface-Modified Silica Nanoparticles can Efficiently Bind, Protect and Transfect Genes In-Vitro, Poster: CRS Annual Meeting, Erlangen, Germany, 18.-19.03.99.Google Scholar
22. Nass, R., Aslan, M., Nonninger, R., Schmidt, H., Matje, P., New Processing Techniques for the Production of Pressureless Sintered SiC Parts, in Ceramic Processing Science and Technology, edited by Hausner, (ACerS. 51, Westerville, 1995) p. 433437.Google Scholar
23. Nonninger, R., Ph. D. Thesis, University of Saarland, Saarbrücken, Germany, 1995.Google Scholar
24. Judeinstein, P., Oliveira, P. W., Krug, H., and Schmidt, H., Photochromic Organic-Inorganic Nanocomposites as Holographic Storage Media Adv. Mater. Opt. Electron. 7(3), p. 123133 (1997).10.1002/(SICI)1099-0712(199705)7:3<123::AID-AMO299>3.0.CO;2-B3.0.CO;2-B>Google Scholar
25. Oliveira, P. W., Krug, H., Müller, P., and Schmidt, H., Fabrication of GRIN-Materials by Photopolymerization of Diffusion-Controlled Organic-Inorganic Nanocomposite Materials, in Better Ceramics Through Chemistry VII:. Organic/Inorganic Hybrid Materials, edited by Coltrain, B. K. (Mat. Res. Soc. Proc. 435, Pittsburgh, PA 1996) p. 55535558.Google Scholar
26. Oliveira, P. W., Krug, H., Frantzen, A., M., M. Mennig, and Schmidt, H., Generation of Wet-Chemical AR-Coatings on Plastic Substrates by Use of Polymerizable Nanoparticles, in SPIE Vol. 3136 Sol-Gel Optics IV, edited by J. D. Mackenzie (SPIE, Bellingham/Washington, 1997), p. 452461.Google Scholar
27. Tiefensee, F., Ph. D. Thesis, University of Saarland, Saarbriicken, Germany, 1994.Google Scholar
28. Oliveira, P. W., private communication, to be published later.Google Scholar
29. Mennig, M., Oliveira, P. W., Schmidt, H., Interference Coatings on Glass Based on Photopolymerizable Nanomer Material, Proc. 2 nd ICCG (1998), Saarbrüicken, accepted for publication in Thin Solid Films (in print).10.1016/S0040-6090(99)00335-1Google Scholar
30. Oliveira, P. W., Krug, H., A., Frantzen, M., Mennig, H., Schmidt, Multilayer NIR Reflective Coatings on Transparent Plastic Substrates from Photopolymerizable Nanoparticulate Sols, Proc. 2nd ICCG (1998), Saarbriicken, accepted for publication in Thin Solid Films (inprint).Google Scholar
31. Mennig, M., Oliveira, P. W., and Schmidt, H., to be held at MRS Spring Meeting 1999, San Francisco/CA, USA.Google Scholar
32. Koch, T., Mennig, M., and Schmidt, H., UV-Curable Epoxy-Based Nanocomposite Adhesive for Applications in Integrated Optics, World Ceramics Congress & Forum on New Materials (CIMTEC), Florence/Italy, 1998 (in print)Google Scholar
33. Philipp, G. and Schmidt, H., The Reactivities of TiO2 and ZrO2 in Organically Modified Silicates, J. Non-Cryst. Sol. 82, p. 3136 (1986).10.1016/0022-3093(86)90107-9Google Scholar
34. Schmidt, H., Kasemann, R., Burkhart, T., Wagner, G., Arpac, E., and Geiter, E., Inorganic-Organic Hybrid Coatings for Metal and Glass Surfaces, in Hybrid Organic-Inorganic Composites, edited by Mark, J. E. (American Chemical Society, ACS 585, Washington, DC, 1994), p. 331347.10.1021/bk-1995-0585.ch026Google Scholar