Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T14:43:22.701Z Has data issue: false hasContentIssue false

Organic Single Crystal Transistors Gated by Electric Double Layers in Ionic Liquid

Published online by Cambridge University Press:  01 February 2011

R. Hirahara
Affiliation:
hirahara@chem.sci.osaka-u.ac.jp, Osaka University, Toyonaka, 560-0043, Japan
S. Ono
Affiliation:
shimpei@criepi.denken.or.jp, CRIEPI, Komae, 201-8511, Japan
S. Seki
Affiliation:
s-seki@criepi.denken.or.jp, CRIEPI, Komae, 201-8511, Japan
Y. Tominari
Affiliation:
tominari@chem.sci.osaka-u.ac.jp, Osaka University, Toyonaka, 560-0043, Japan
J. Takeya
Affiliation:
takeya@chem.sci.osaka-u.ac.jp, Osaka University, Graduate School of Science, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
Get access

Abstract

Gating organic transistors with electric double layers (EDL) of electrolytes is advantageous in injecting high-density carriers with the application of minimum gate voltage. The drawback of such devices, however, has been that commonly used polymer electrolytes suffer relatively slow ionic diffusion before forming the EDLs. In this report, we disclose a new class of EDL devices incorporating low-viscosity room temperature ionic liquid as the electrolyte layer, so that the rapid ionic diffusion allows MHz operation for the transistor performance. We fabricate a well structure using an elastomeric rubber stamp of poly-dimethylsiloxane to hold the ionic liquid 1-ethyl 3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide, known for high ionic conductivity. The transistor performs without hysteresis with the carrier mobility of 5 cm2V−1s−1, realizing the highest sheet transconductance ever achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1..Rogers, R. D. and Seddon, K. R. (eds), Ionicliquids:industrial applications for green chemistry (American Chemical Society, Washington DC, 2002).Google Scholar
2. Susan, M. A. B. H., Kaneko, T., Noda, A., and Watanabe, M., J. Am. Chem. Soc. 127, 4976 (2005).Google Scholar
3. Seki, S., Kobayashi, Y., Miyashiro, H., Ohno, Y., Usami, A., Mita, Y., Kihira, N., Watanabe, M., and Terada, N., J. Phys. Chem. B 110, 10228 (2006).Google Scholar
4. Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., Shimoda, T., and Ogawa, S., Appl. Phys. Lett. 90, 102120 (2007)Google Scholar
5..Menard, E., Podzorov, V., Hur, S. H., Gaur, A., Gershenson, M. E. and Rogers, J. A. Adv. Mater. (Weinheim, Ger.) 16, 23 (2004).Google Scholar
6. Panzer, M.J., Newman, C.R., and Frisbie, C.D., Appl. Phys. Lett. 86, 103503 (2005).Google Scholar
7..Takeya, J., Yamada, K., Hara, K., Shigeto, K., Tsukagoshi, K., Ikehata, S., and Aoyagi, Y., Appl. Phys. Lett. 88, 112102 (2006).Google Scholar
8..Shimotani, H., Asanuma, H., Takeya, J., and Iwasa, Y., Appl. Phys. Lett. 89, 203501 (2006).Google Scholar
9..Lee, J., Panzer, M. J. He, Y., Lodge, T. P. and Frisbie, C. D. J. Am. Chem. Soc. 129, 4532 (2007).Google Scholar
10. Cho, J. H. Lee, J., He, Y., Kim, B.S., Lodge, T. P. and Frisbie, C. D. Adv. Mater. (Weinheim, Ger.) 20, 686 (2008).Google Scholar
11. Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., Weber, W., J. Appl. Phys. 92, 5259 (2002).Google Scholar
12. Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M., Nature 445, 745 (2007).Google Scholar