Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-12T06:28:42.246Z Has data issue: false hasContentIssue false

Ordering Kinetics and Diffusion in Some L12 Alloys

Published online by Cambridge University Press:  26 February 2011

Robert W. Cahn*
Affiliation:
Keck Laboratory for Engineering Materials California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

A comparison is made of, ordering kinetics for Cu3Au, (Tc = 388 ° C), Ni3Mn (Tc = 500° C) Ni3Fe (Tc = 517°C) and Ni3Al (Tc = 1450 ° C), which all form the L12 superlattice, and these kinetics are correlated with diffusion data for the same alloys. Comparing different alloys, it is shown that for a fixed relaxation time for the establishment of order, the lower is the self-diffusivity, Ds, of the slowest-diffusing species, the higher the critical temperature, Tc, for the first appearance of order. Ni3A1, in particular, has an estimated Ds of about 5 orders of magnitude lower, on average, than the three other alloys. The implications of this inverse relation between Tc and Ds are discussed in relation to published models for diffusion in ordered alloys and ordering kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakker, H. (1984). In “Diffusion in Crystalline Solids” (Murch, G. E. and Nowick, A. S., eds.) pp. 189256. Academic Press, New York.CrossRefGoogle Scholar
Beeler, J. R. Jr., (1965). Phys. Rev. 138, A1259–A1270.CrossRefGoogle Scholar
Beers, J. C. II, and Guttman, L. (1974). Phys. Rev. B 9, 39413943.CrossRefGoogle Scholar
Benci, S., and Gasperrini, G. (1966). J. Phys. Chem. Solids 27, 10351039.CrossRefGoogle Scholar
Benci, S., Gasperrini, G., Germagnoli, E., and Schianchi, G. (1965). J. Phys. Chem. Solids 26, 687690.CrossRefGoogle Scholar
Benci, S. Gasperrini, G. Germagnoli, E., and Schianchi, G. (1965). J. Phys. Chem. Solids 26, 20592065.CrossRefGoogle Scholar
Bolton, H. C. and Leng, C. A. (1975). Phys. Rev. B 11, 20692071.CrossRefGoogle Scholar
Bronfin, M. B., Bulatov, G. S. and Drugova, I. A. (1975). Fiz. met. metalloved. 40, 363366.Google Scholar
Cahn, R. W., Siemers, P. A., Geiger, J. E. and Bardhan, P. (1986). Submitted to Acta metall.Google Scholar
Calvayrac, Y. and Fayard, M. (1973). Phys. Stat. Sol. (a) 17, 407421.CrossRefGoogle Scholar
Caplain, A. and Chambron, W. (1977). Acta metall. 25, 10011011.CrossRefGoogle Scholar
Carpenter, L. J. C. and Schulson, E. M. (1981). Scripta metall. 15, 549554.CrossRefGoogle Scholar
Chou, T. C. and Chou, Y. T. (1985). In “High-Temperature Ordered Intermetallic Alloys” (Koch, C. C. et al., eds.), MRS Symp. Proc. Vol.39, pp. 461474.Google Scholar
Clark, J. P. and Mohanty, G. P. (1974). Scripta metall. 15, 549554.Google Scholar
Cook, H. F., de Fontaine, D., and Hilliard, J. E. (1969). Acta metall. 17, 765773.CrossRefGoogle Scholar
Corey, C. L. and Potter, D. I. (1967). J. Appl. Phys. 38, 38943900.CrossRefGoogle Scholar
Dahmani, C. E., Cadeville, M. C., and Pierron-Bolnes, V. (1985). Acta metall. 33, 369377.CrossRefGoogle Scholar
Dienes, G. J. (1955). Acta metall. 3, 549557.CrossRefGoogle Scholar
Elkholy, H. and Nagy, E. (1962). J. Phys. Chem. Solids 23, 16131619.CrossRefGoogle Scholar
Fishman, S. C., Gupta, D., and Lieberman, D. S. (1970). Phys. Rev. B 2, 14511460.CrossRefGoogle Scholar
Girifalco, L. A. (1964). J. Phys. Chem. Solids 25, 323333.CrossRefGoogle Scholar
Glauber, R. J. (1963). J. Math. Phys. 4, 294307.CrossRefGoogle Scholar
Goldstein, J. I., Hanneman, R. E., and Ogilvie, R. E. (1965). Trans. Met. Soc. AIME 233, 812820.Google Scholar
Gross, W. (1959). Ph.D. dissertation, Columbia University.Google Scholar
Gschwend, K., Sato, H., and Kikuchi, R. (1978). J. Chem. Phys. 69 50065019.CrossRefGoogle Scholar
Gschwend, K., Sato, H., and Kikuchi, R. (1979). J. Chem. Phys. 71, 28442852.CrossRefGoogle Scholar
Gupta, D. and Lieberman, D. S. (1970). In “Ordered Alloys – Structural Applications and Physical Metallurgy” (Kear, B. H. et al., eds.) pp. 216225. Claitor's, Baton Rouge. Google Scholar
Gupta, D. and Lieberman, D. S. (1971). Phys. Rev. B 4, 10701078.CrossRefGoogle Scholar
Gust, V., Hintz, M. B., Lodding, A., Odelius, H., and Predel, B. (1981). Phys. Stat. Sol. (a) 64, 187194.CrossRefGoogle Scholar
Hancock, G. F. (1971). Phys. Stat. Sol. (a) 7, 535540.CrossRefGoogle Scholar
Hashimoto, T., Miyoshi, T. and Ohtsuke, H. (1976). Phys. Rev. B 13, 11191122.CrossRefGoogle Scholar
Hashimoto, T., Nishimura, K., and Takeuchi, Y. (1978). J. Phys. Soc. Japan 45, 11271135.CrossRefGoogle Scholar
Hatta, I. and Shiboya, M. (1978). J. Phys. Soc. Japan 45, 487494.CrossRefGoogle Scholar
Janssen, M. M. P. (1973). Met. Trans. 4, 16231633.CrossRefGoogle Scholar
Kikuchi, R. and Sato, H. (1969). J. Chem. Phys. 51, 161181.CrossRefGoogle Scholar
Kikuchi, R. and Sato, H. (1970). J. Chem. Phys. 53, 27022712.CrossRefGoogle Scholar
Kikuchi, R. and Sato, H. (1972). J. Chem. Phys. 55, 49624977.CrossRefGoogle Scholar
Kikuchi, R. and Sato, H. (1974). Acta metall. 22, 10991112.CrossRefGoogle Scholar
Kohn, A., Levasseur, J., Philibert, J., and Wanin, M. (1970). Acta metall. 18, 163173.CrossRefGoogle Scholar
Kuper, A. B., Lazarus, D., Manning, J. R., and Tomizuka, C. T. (1956). Phys. Rev. 104, 15361541.CrossRefGoogle Scholar
Lord, N. W. (1953). J. Chem. Phys. 21, 692699.CrossRefGoogle Scholar
McCoy, J. K., Kikuchi, R., Gschwend, K., and Sato, H. (1982). Phys. Rev. B 25, 17341748.CrossRefGoogle Scholar
Morris, D. G., Brown, G. T., Piller, R. C., and Smallman, R. E. (1976). Acta metall. 24, 2128.CrossRefGoogle Scholar
Nagy, E. and Nagy, I. (1962). J. Phys. Chem. Solids 23, 16051612.CrossRefGoogle Scholar
Nowick, A. S. and Weisberg, L. R. (1958). Acta Metall. 6, 260265.CrossRefGoogle Scholar
Sato, H. and Kikuchi, R. (1976). Acta metall. 24, 797809.CrossRefGoogle Scholar
Siegel, S. (1950). J. Chem. Phys. 8, 860866.CrossRefGoogle Scholar
Tu, K. N. (1980). Scripta metall. 14, 663666.CrossRefGoogle Scholar
Vineyard, G. H. (1956). Phys. Rev. 102, 981992.CrossRefGoogle Scholar
Vintaykin, Ye. Z., Litvin, D. F., and Udovenko, V. A. (1973). Fiz met. metalloved. 35, 215217.Google Scholar
Walsoé de Reca, E. and Pampillo, C. (1967). Acta metall. 15, 12631268.CrossRefGoogle Scholar
Weisberg, L. R. and Quimby, S. C. (1958). Phys. Rev. 110, 338348.CrossRefGoogle Scholar
Yamamoto, T., Takashima, T., and Nishida, K. (1980). Nippon Kinzoku Gakkaishi 44, 294299. Also: Diffusion and Defect Data (1980) 22, 95–97.Google Scholar
Yamauchi, H. and de Fontaine, D. (1974). In “Order-Disorder Transformations in Alloys” (H., Warlimont, ed.), pp. 148178. Springer-Verlag, Heidelberg, New York.CrossRefGoogle Scholar
Yokota, M., Harada, R., and Mitani, H. (1979). Nippon Kinzoku Gakkaishi 43, 793799. Also: Diffusion and Defect Data (1979) 21, 100–103.Google Scholar