Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-08T11:40:23.770Z Has data issue: false hasContentIssue false

Ordering in Lithium and Sodium Inserted W18O49

Published online by Cambridge University Press:  15 February 2011

A. Martinez De La Cruz
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Apartado Postal 1864, Monterrey, N.L., MEXICO.
Leticia M. Torres-Martinez
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Apartado Postal 1864, Monterrey, N.L., MEXICO.
F. Garcia-Alvarado
Affiliation:
Facultad de Ciencias Experimentales y Técnicas, Universidad San Pablo-CEU, Urb. Montepríncipe, Apd. Correos 67, Boadilla del Monte, Madrid, SPAIN.
E. Moran
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, SPAIN.
M. A. Alario-Franco
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, SPAIN.
Get access

Abstract

The insertion of alkali metals in W18O49 is governed by size of the cations. In this way, lithium insertion ( rVI = 0.76 Å ) seems to be optimal and a maximum of 23.5 lithium per formula can be reached before the irreversible reduction of W18O49. On the other hand, when sodium is inserted ( rVI = 1.02 Å ) an order of magnitude decrease in the amount inserted is observed and a maximum of only 1.8 sodium per formula can be intercalated. On the basis of the different phases that we have previously detected by electrochemical methods in the Li / W18O49 and Na / W18O49 systems, we have started a structural characterization by electron diffraction techniques. These studies have revealed some lithium and sodium ordering states for certain compositions; this can be explained taking into account the different types of tunnels present in W18O49.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.- Cheng, Kent H. and Stanley Whittingham, M., Solid State Ionics 1, 151 (1980).Google Scholar
2.- Kay, S.A., D. Phil. Thesis, University of Oxford (1986).Google Scholar
3.- Martínez de la Cruz, A., García-Alvarado, F., Morán, E., Alario-Franco, M. A. and Leticia M., Torres-Martínez, J. Mater. Chem. 5, 513 (1995).Google Scholar
4.- Martínez de la Cruz, A., Leticia M., Torres-Martínez, García-Alvarado, F., Morán, E. and Alario-Franco, M.A., Mat. Res. Soc. Proc. Vol. 369, 131 (1995).Google Scholar
5.- Banks, E. and Goldstein, A., Inorg. Chem. 7, 967 (1968).Google Scholar
6.- Martinez de la Cruz, A. et al. , to be published.Google Scholar
7.- Magnali, A., Ark. Kemi 1, 213 (1949).Google Scholar
8.- Marinder, B.O., Hörlin, T. and Magnéli, A., Mat. Res. Bull. 14, 387 (1979).Google Scholar
9.- Takusagawa, F. and Jacobson, R.A., J. Solid St. Chem. 18, 163 (1976).Google Scholar
10.- Abrahams, S.C., Jamieson, P.B. and Bernstein, J.L., J. Chem. Phys. 54(6), 2355 (1971).Google Scholar