Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T02:00:23.767Z Has data issue: false hasContentIssue false

Ordering in AlGaN: Thermodynamical and X-Ray Analysis

Published online by Cambridge University Press:  17 March 2011

Sandra Ruffenach-Clur
Affiliation:
GES, Université Montpellier II, CC074, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
Olivier Briot
Affiliation:
GES, Université Montpellier II, CC074, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
Matthieu Moret
Affiliation:
GES, Université Montpellier II, CC074, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
Roger-Louis Aulombard
Affiliation:
GES, Université Montpellier II, CC074, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
Get access

Abstract

Up to date, different groups have reported ordering phenomena in nitride alloys like InGaN or AlGaN. These evidences of ordering during and after growth lead us to study the atomic arrangement of Al and Ga on site III in the AlGaN alloy using a thermodynamical approch. We have defined the enthalpy and the entropy of our system using the Keating model and the cluster variation method limited to the first coordination shell. This study gives us a good way to understand ordering, and moreover to see why at three special compositions (25%, 50% and 75%), the alloys have good chances to present a better crystalline quality than in other cases.

We have grown AlGaN samples increasing the Al composition by 10% steps, in the full range of composition from GaN to AlN. All the growth parameters were kept constant except for the alloy composition. X-Ray diffraction measurements performed on these samples indicate that FWHM increases linearly with Al composition, except for three compositions, where according to our thermodynamical study, we observe an improved crystalline quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuan, T.S., Kuech, T.F., Wang, W.I., Wilkie, E.L., Phys.Rev.Lett. 54(3), 201 (1985).Google Scholar
2. Jen, H.R., Cherng, M.J., Stringfellow, G.B., Appl.Phys.Lett. 48, 1603 (1986).Google Scholar
3. Shadid, M.A., Mahajan, S., Laughlin, D.E., Cox, H.M., Phys.Rev.Lett. 58, 2567 (1987).Google Scholar
4. Gomyo, A., Suzuki, T., Iijima, S., Phys.Rev.Lett. 60, 2645 (1988).Google Scholar
5. Doppalapudi, D., Basu, S.N., Ludwig, K.F. Jr, Moustakas, T.D., J.Appl.Phys. 84(3), 1389 (1998).Google Scholar
6. Korakakis, D., Ludwig, K.F. Jr, Moustakas, T.D., Appl.Phys.Lett. 71(1), 72 (1997)Google Scholar
7. Ebling, D.G., Kirste, L., Haug, Ch., Brenn, R., Benz, K.W., Tillmann, K., E-MRS ICEM2000, to be published in Mat.Science Eng.B.Google Scholar
8. Kikuchi, R., Phys.Rev. 81(6), 988 (1951).Google Scholar
9. Tsao, J.Y., “Fundamentals of molecular beam epitaxy”, Academic Press, San Diego, USA (1993)Google Scholar
10. Mikkelsen, J.C. Jr, Boyce, J.B., Phys.Rev.B 28, 7130 (1983).Google Scholar
11. Keating, P.N., Phys.Rev. 145(2),637 (1966).Google Scholar
12. Kim, K., Lambrecht, W.R., Segall, B., Phys.Rev.B 53(24), 16310 (1996).Google Scholar
13. Clur, S., Briot, O., Rouvière, J.L., Andenet, A., Vaillant, Y-M. Le, Gil, B., Aulombard, R.L., Demangeot, J.F., Frandon, J., Renucci, M., Mat. Res. Soc. Symp. Proc. 468, 23 (1997).Google Scholar
14. Ruffenach-Clur, S., Briot, O., Gil, B., Aulombard, R.L., Mat.Sci.Eng.B 50, 219 (1997).Google Scholar