Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T02:00:50.289Z Has data issue: false hasContentIssue false

Ordered Structure in GalnP/AIGalnP Quantum Wells and p-Doped Multiquantum Well AIGalnp Laser Diodes

Published online by Cambridge University Press:  26 February 2011

Toshiaki Tanaka
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1–280 Higashi-koigakubo, Kokubunji, Tokyo 185, Japan
Hironori Yanagisawa
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1–280 Higashi-koigakubo, Kokubunji, Tokyo 185, Japan
Shin-Ichiro Yano
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1–280 Higashi-koigakubo, Kokubunji, Tokyo 185, Japan
Shigekazu Minagawa
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1–280 Higashi-koigakubo, Kokubunji, Tokyo 185, Japan
Get access

Abstract

Zinc doping is performed on the GalnP/AIGalnP multiquantum well (MQW) structure with the aim of dissolving the ordered atomic arrangement which results in higher quantum levels and therefore shorter lasing wavelengths. It is shown that the photoluminescence (PL) peak wavelength gradually shortens with doping and decreases by 20 nm when the hole concentration reaches 1×1018 cm−3, while the PL relative intensity becomes half that of an undoped MQW layer. Therefore, a moderate level of zinc doping of around 4∼5×1017 cm−3 is desirable to shorten the PL wavelength without decreasing the crystal quality. Transmission electron nano-diffraction patterns confirm that the ordered structure in the MQW layers disappears as the hole concentration increases. On the basis of this data, uniformly p-doped and modulation p-doped MQW laser diodes are fabricated and their characteristics are compared with the undoped MQW lasers. CW operation is achieved at wavelengths of 631 to 633 nm, which is 10 nm shorter than the 643 nm in an undoped MQW laser. Comparatively low threshold currents of 73 and 88 mA are attained for uniformly p-doped and modulation p-doped MQW lasers, respectively. However, they are about 20∼30 mA higher than those of the undoped MQW lasers. This results from the large overflow of electrons from the active layer, and the fact that the differential gain becomes smaller in the 630-nm band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I., and Yuasa, T., Appl. Phys. Lett. 50, 673 (1987).Google Scholar
2. Ueda, O., Takikawa, M., Komeno, J., and Umebu, I., J. Appl. Phys. 26, L1824 (1987).Google Scholar
3. Kondow, M., Kakibayashi, H., and Minagawa, S., J. Cryst. Growth 88, 291 (1988).Google Scholar
4. Minagawa, S., Kondow, M., and Kakibayashi, H., Electron. Lett. 25, 1439 (1989).Google Scholar
5. Minagawa, S. and Kondow, M., Electron. Lett. 25, 758 (1989).CrossRefGoogle Scholar
6. Tanaka, T., Minagawa, S., Kawano, T., and Kajimura, T., Electron. Lett. 25, 905 (1989).Google Scholar
7. Minagawa, S., Tanaka, T., and Kondow, M., Electron. Lett. 25, 925 (1989).Google Scholar
8. Kikuchi, A., Kishino, K. and Kaneko, Y., Electron. Lett. 21, 1301 (1991).CrossRefGoogle Scholar
9. Ohba, Y., lshikawa, M., Sugawara, H., Yamamoto, M., and Nakanishi, T., J. Cryst. Growth 77, 374 (1986).Google Scholar
10. Suzuki, T., Gomyo, A., Hino, I., Kobayashi, K., Kawata, S., and lijima, S., Jpn J. Appl. Phys. 27, L1549 (1988).Google Scholar
11. Gomyo, A., Hotta, H., Hino, I., Kobayashi, K., and Suzuki, T., Jpn J. Appl. Phys. 28, L1330 (1989).CrossRefGoogle Scholar
12. Nishikawa, Y., lshikawa, M., Tsuburai, Y., and Kokubun, Y., Jpn J. Appl. Phys. 28, L2092 (1989).Google Scholar
13. Deppe, D. G., Nam, D. W., Holonyak, N. Jr, Hsieh, K. C., and Baker, J. E., Appl. Phys. Lett. 50, 1413 (1988).Google Scholar
14. Meehan, K., Dabowski, F. B., Gavrilovic, P., Williams, J. E., Stutuis, W., Hsieh, K. C., and Holonyak, N. Jr, Appl. Phys. Lett. 54, 2136 (1989).Google Scholar
15. lshikawa, M., Shiozawa, H., Tsuburai, Y., and Uematsu, Y., Electron. Lett., 26, 212 (1990).Google Scholar
16. ltaya, K., lshikawa, M., and Uematsu, Y., Electron. Lett. 26, 839 (1990).Google Scholar
17. Kobayashi, K., Ueno, Y., Hotta, H., Gomyo, A., Tada, K., Hara, K., and Yuasa, T., Jpn J. Appl. Phys. 29, L1669 (1990).Google Scholar
18. Dallessase, J. M., Nam, D. W., Deppe, D. G., and Holonyak, N. Jr, Appl. Phys. Lett. 53, 1826 (1988).Google Scholar
19. Valster, A., Liedenbaum, C. T. H. F., Heijden, J. M. M. v. d., Finke, M. N., Severens, A. L. G., and Boermans, M. J. B., Twelfth IEEE International Semiconductor Laser Conference, Davos, Switzerland, C–1, 28 (1990).Google Scholar
20. Kakibayashi, H. and ltoh, K., Jpn J. Appl. Phys. 30, L52 (1991).Google Scholar
21. Liedenbaum, C. T. H. F., Valster, A., Severens, A. L. G. J., and 't Hooft, G. W., Appl. Phys. Lett. 57, 2698 (1990).Google Scholar