Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-10T09:11:46.959Z Has data issue: false hasContentIssue false

Ordered Si-Ge nanostructures by glancing angle deposition via ion beam sputtering

Published online by Cambridge University Press:  13 September 2011

Jens Bauer
Affiliation:
Leibniz Institute of Surface Modification, Leipzig, Germany
Michael Weise
Affiliation:
Leibniz Institute of Surface Modification, Leipzig, Germany
Chinmay Khare
Affiliation:
Leibniz Institute of Surface Modification, Leipzig, Germany
Bernd Rauschenbach
Affiliation:
Leibniz Institute of Surface Modification, Leipzig, Germany
Get access

Abstract

Glancing angle deposition (GLAD) was used to deposit ordered arrangements of Si/Ge-nanocolumns applying the ion beam sputter technique. After substrate preparation by electron beam lithography as well as nanosphere lithography the deposition behavior of GLAD nanocolumns in regular arrangements with different symmetries was studied. The nanocolumns exhibited distinct morphology regions which are correlated to their temporal evolution during deposition. Furthermore, the customization of the column morphology by non-uniform substrate rotation is considered. Axial Si/Ge-heterojunctions were incorporated by sequential deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M.S., Chen, G., Tang, M. Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.-P., and Gogna, P., Adv. Mater. 19, 1043 (2007)Google Scholar
2. Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P., Nature Lett. 451, 163 (2007)Google Scholar
3. Koga, T., Cronin, S. B., Dresselhaus, M. S., Liu, J. L., and Wang, K. L., Appl. Phys. Letters 77, 1490 (2000)Google Scholar
4. Lakhtakia, A., and Messier, R., “Sculptured Thin Films - Nanoengineered Morphology and Optics” (SPIE, 2005)Google Scholar
5. Hawkeye, M. M., and Brett, M. J., J. Vac. Sci. Technol. A 25, 1317 (2007)Google Scholar
6. Zhao, Y.-P., Ye, D.-X., Wang, G.-C., and Lu, T.-M., Proc. SPIE 5219, 59 (2003)Google Scholar
7. Schubert, E., Höche, T., Frost, F., and Rauschenbach, B., Appl. Phys. A-Mat. Sci. & Proc. 81, 481–486 (2005)Google Scholar
8. Fuhrmann, B., Leipner, H.S., and Höche, H.R., Nano Letters 5, 2524–7 (2005)Google Scholar
9. Main, E., Karabacak, T., and Lu, T. M., J. Appl. Phys. 95, 4346 (2004)Google Scholar
10. Ye, D.-X., Ellison, C. L., Lim, B.-K., and Lu, T.-M., J. Appl. Phys. 103, 103531 (2008)Google Scholar
11. Patzig, C., Rauschenbach, B., Fuhrmann, B., and Leipner, H. S., J. Appl. Phys. 103, 024313 (2008); C. Patzig, T. Karabacak, B. Fuhrmann, and B. Rauschenbach, J. Appl. Phys. 104, 094318(2008); C. Patzig, C. Khare, B. Fuhrmann, and B. Rauschenbach, Phys. Status Solidi B 247, 1322 (2010) Google Scholar