Skip to main content Accessibility help

Optimization of the protocrystalline p-layer in a-Si:H-based n-i-p photodiodes

  • Y. Vygranenko (a1) (a2), M. Fernandes (a1) (a2), M. Vieira (a1) (a2) and A. Sazonov (a3)


This work reports a carbon-free, blue-enhanced a-Si:H n-i-p photodiode with an optimized protocrystalline p-layer. Although the used deposition conditions for the p-layer correspond to the microcrystalline regime, thin layers are mostly protocrystalline due to the amorphous underlying undoped layer. This conclusion is supported by Raman spectroscopy measurements. We have also found that the optical band gap of the p-layer can be varied by adjusting the rf power. By widening the band gap and tuning the impurity concentration in the p-layer, absorption and recombination losses at the p-i interface were reduced. The current-voltage, capacitance-voltage, and spectral-response characteristics of fabricated photodiodes are correlated with the doping level, optical band gap, and deposition conditions for p-layers. The optimized device exhibits a leakage current of about ∼80 pA/cm2 at 5 V reverse bias. The external quantum efficiency reaches a peak value of 92% at a wavelength of 510 nm, and, at shorter wavelengths, decreases down to 66%@400nm.



Hide All
[1] Street, R. A., Ed., Technology and Applications of Amorphous Silicon (Berlin: Springer-Verlag, 2000).
[2] Beutel, J., Kundel, H. L., and Van Metter, R., Eds., Handbook of Medical Imaging, (Washington, DC.: SPIE Press, 2000).
[3] Stiebig, H., Siebke, F., Beyer, W., Beneking, C., Rech, B., and Wagner, H., Sol. Energy Mater. Sol. Cells 48, 351 (1997).
[4] Servati, P., Vygranenko, Y., Nathan, A., Morrison, S., and Madan, A., J. Appl. Phys. 96, 7578 (2004).
[5] Vygranenko, Y., Chang, J., Nathan, A., IEEE J. Quantum Electron. 41, 697 (2005).
[6] Koval, R. J., Pearce, J. M., Chen, Chi, Ferreira, G. M., Ferlauto, A. S., Collins, R. W., and Wronski, C. R., Mater. Res. Soc. Symp. Proc. 715, paper A6.1 (2002).
[7] Koval, R. J., Chen, Chi, Ferreira, G. M., Ferlauto, A. S., Pearce, J. M., Rovira, P. I., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 81, 1258 (2002).
[8] Ferreira, G.M., Chen, Chi, Koval, R.J., Pearce, J.M., Wronski, C.R., Collins, R.W., J. Non-Crystal. Solids 338–340, 694 (2004).
[9] Pearce, J. M., Podraza, N., CollinsJ, R. W., Al-Jassim, M. M., Jones, K. M., Deng, J. and Wronski, C. R., J. Appl. Phys. 101, 114301 (2007).
[10] Smit, C., van Swaaij, R.A.C.M.M., Donker, H., Petit, A.M.H.N., Kessels, W.M.M. and van de Sanden, M.C.M., J. Appl. Phys. 94, 3582 (2003).
[11] Deng, J. and Wronski, C. R., J. Appl. Phys. 98, 024509 (2005).
[12] Pearce, J. M., Koval, R. J., Ferlauto, A. S., Collins, R. W., and Wronski, C. R., Appl. Phys. Lett. 77, 3093 (2000).
[13] Theil, J. A., Mat. Res. Soc. Symp. Proc. 762, paper A21.4 (2003).
[14] Fathi, E., Vygranenko, Y., Vieira, M., and Sazonov, A., Appl. Surf. Science 257, 8901 (2011).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed