Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T18:34:17.154Z Has data issue: false hasContentIssue false

Optimisation of Adhesion at Transition Metal-Oxide Interfaces by Processing at Well-Chosen Oxygen Activity

Published online by Cambridge University Press:  10 February 2011

M. Backhaus-Ricoult*
Affiliation:
Centre d'Etudes de Chimie Métallurgique, CNRS, 15 Rue G. Urbain, 94 407 Vitry sur Seine, France
Get access

Abstract

Transition metal-oxide interfaces suffer within their thermodynamic stability range Gibbs' adsorption and show important changes in chemical composition with oxygen activity. As a consequence, specific free interfacial energy and adhesion energy also vary with oxygen activity. Adhesion at a given non-reactive transition metal-oxide interface can then be optimised by establishing the proper oxygen activity during processing or by a post-treatment at the interface.

In the present work, the approach of Gibbs' adsorption is extended to crystalline, anisotropic (special) transition metal-oxide interfaces. It is demonstrated that interfacial energy varies with oxygen activity. The variation in energy is studied for different adsorption energies, temperatures and interfacial planes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Proceedings of Metal-Ceramic Interfaces 1990, Act. Scr. Metall. 4, edited by Rühle, M., Evans, A.G., Ashby, M.F. and Hirth, J.P. (Pergamon Press) (1990).Google Scholar
2. Proceedings of the International Symposium on Metal-Ceramic Interfaces, Acta Met. Mat. 40, edited by Mader, W. and Rtihle, M. (1992).Google Scholar
3. Imhoff, D., Laurent, S., Colliex, C. and Backhaus-Ricoult, M., Eur. Phys. Journal AP 5, 918(1999)Google Scholar
4. Laurent, S., Imhoff, D., Colliex, C., Hÿtch, M.J., Devaud, J., Hagège, S., Backhaus-Ricoult, M., Proc.iib 98: Intergranular and interphase boundaries in materials, ed. Lejcek, P., Paidar, V., Trans tech pub]., 294–296, 325–328 (1998)Google Scholar
5.. Backhaus-Ricoult, M., Laurent, S., Devaud, J., Hÿtch, M., Imhoff, D., Hagège, S., Colloque de Métallurgie, Edition Physique, ed. Mazière, D. pxx(1999)Google Scholar
6.. Huang, X.Y., Mader, W. and Kirchheim, R.; Acta metall. Mater. 39, 893907 (1991).Google Scholar
7. Gegner, J., Hoerz, G. and Kirchheim, R.; Interface Science 5, 231243 (1997)10.1023/A:1008611820425Google Scholar
8. Backhaus-Ricoult, M. and Laurent, S., in Interfacial Science in Ceramic Joining, NATO ASI series 3: High technology, 58, ed. Bellosi, A., Kosmac, T., Tomsia, A.P., p. 169 (1997)Google Scholar
9.. Backhaus-Ricoult, M. and Laurent, S., Proc. iib 98: Intergranular and interphase boundaries in materials, ed. Lejcek, P., Paidar, V., Trans tech publ., 294–296, p 173 (1998)Google Scholar
10.. Saiz, E., Tomsia, A.T. and Cannon, R.M. in Ceramic Microstructure: Control at an atomic levels, ed. Tomsia, A.P. and Glaeser, A.M., Plenum Press, p. 65 (1996)Google Scholar
11.. Chatain, D., Chabert, F., Ghetta, V. and Fouletier, J., J. Am. Ceram. Soc. 77, 197 (1994)Google Scholar
12.. Chatain, D., Ghetta, V. and Fouletier, J., Interfacial Science in Ceramic Joining, NATO ASI Series 3, 58, ed. Bellosi, A., Kosmac, T. and Tomsia, A.P., p.45 (1997)Google Scholar
13. Maier, J., Prog. Solid State Chem. 23, 171 (1995)Google Scholar