Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T02:57:32.597Z Has data issue: false hasContentIssue false

Optical-Gain Measurements on GaN and Alx Ga1-xN Heterostructures

Published online by Cambridge University Press:  10 February 2011

L. Eckey
Affiliation:
Technische Universität Berlin, Hardenbergstraβe 36, 10623 Berlin, Germany
J. Holst
Affiliation:
Technische Universität Berlin, Hardenbergstraβe 36, 10623 Berlin, Germany
V. Kutzer
Affiliation:
Technische Universität Berlin, Hardenbergstraβe 36, 10623 Berlin, Germany
A. Hoffmann
Affiliation:
Technische Universität Berlin, Hardenbergstraβe 36, 10623 Berlin, Germany
I. Broser
Affiliation:
Technische Universität Berlin, Hardenbergstraβe 36, 10623 Berlin, Germany
O. Ambacher
Affiliation:
Walter-Schottky-Institut, Technische Universität München, 85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter-Schottky-Institut, Technische Universität München, 85748 Garching, Germany
H. Amano
Affiliation:
Meijo University, Department of Electrical and Electronical Engineering, Nagoya, Japan
I. Akasaki
Affiliation:
Meijo University, Department of Electrical and Electronical Engineering, Nagoya, Japan
Get access

Abstract

Optical gain processes in thin GaN and AlGaN are compared by means of gain spectroscopy using the stripe length method and high-excitation photoluminescence, both performed at various densities and temperatures. We find that inelastic excitonic scattering processes and biexciton decay are important at low temperatures and low excitation densities Both materials are similar in that increasing the excitation density results in gain spectra dominated by the electron-hole plasma and phonon-assisted band-to-band recombination. These also prevail at high temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sugawara, M., Jpn. J. Appl. Phys. 35, 124 (1996)Google Scholar
2. Chow, W. W., Appl. Phys. Lett. 66, 3000 (1995)Google Scholar
3. Frankowsky, G., Steuber, F., Härte, V., Scholz, F., Hangleiter, A., Appl. Phys. Lett. 68, 3746 (1996)Google Scholar
4. Eckey, L., Holst, J.-Chr., Hoffmann, A., Broser, I., Detchprohm, T., Hiramatsu, K., MRS Internet J. of Nitride Semiconductor Research 2, 1 (1997)Google Scholar
5. Amano, H., Hiramtsu, K., Akasaki, I., Jpn. J. Appl. Phys. 27, L1384 (1988)Google Scholar
6. Angerer, H., Ambacher, O., Dimitrov, R., Metzger, T., Rieger, W., Stutzmann, M., MRS Internet J. of Nitride Semiconductor Research 1, 15 (1996)Google Scholar
7. Shaklee, K. L., Nahory, R. E., Leheny, R. F., J. Lumin. 7, 284 (1973)Google Scholar
8. Eckey, L., Hoist, J., Hoffmann, A., Broser, I., Amano, H., Akasaki, I., Detchprohm, T., Hiramatsu, K., Proc. 23rd Int. Conf. Phys. Semicond., ed. Scheffler, M., Zimmermann, R.; World Scientific, Singapore, 1996, p. 2861 Google Scholar
9. Cingolani, R., Ferrara, M., Lugarà, M., Solid State Communications 60, 705 (1986)Google Scholar
10. Wiesmann, D., Brener, I., Pfeiffer, L., Khan, M. A., Sun, C. J., Appl. Phys. Lett. 69, 3384 (1996)Google Scholar
11. Pokrovskii, Y., phys. stat. sol 82, 385 (1972)Google Scholar
12. Amano, H., Asahi, T., Kito, M., Akasaki, I., J. Lumin. 48&49, 889 (1991)Google Scholar
13. Lasher, G., Stern, F., Phys. Rev. B 133, A553 (1964)Google Scholar
14. Saito, H., Göbel, E., Phys. Rev. B 31, 2360 (1985)Google Scholar