Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T01:13:45.730Z Has data issue: false hasContentIssue false

Optical Transduction Schemes for Molecularly Imprinted Polymer Sensors

Published online by Cambridge University Press:  01 February 2011

George M. Murray
Affiliation:
Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723–6099
Glen E. Southard
Affiliation:
Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723–6099
Get access

Abstract

Molecular imprinting is a useful technique for making a chemically selective binding site. [1] The method involves building a synthetic polymeric scaffold of molecular compliments containing the target molecule with subsequent removal of the target to leave a cavity with a structural “memory” of the target. Molecularly imprinted polymers can be employed as selective adsorbents of specific molecules or molecular functional groups. Sensors for specific molecules can be made using optical transduction through chromophores residing in the imprinted site. The use of metal ions as chromophores can improve selectivity due to directional bonding. The combination of molecular imprinting and spectroscopic selectivity can result in sensors that are highly sensitive and nearly immune to interferences. [2]

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wulff, G., and Sarhan, A., A., Angew. Chem., International Edition, 11 341 (1972).Google Scholar
2. Jenkins, A. L., Uy, O. M. and Murray, G. M., G. M., Anal. Chem., 71, 373 (1999).Google Scholar
3. Crosby, G. A., Whan, R. E., Freeman, J. J.; J. Phys. Chem., 66, 2493 (1962).Google Scholar
4. Jenkins, A. L., and Murray, G. M., Anal. Chem., 68, 2974 (1996).Google Scholar
5. Hernandez-Jover, T., Izquierdo-Pulido, M., Veciana-Nogues, M. T. and Vidal-Carou, M. C., J. Agric. Food Chem., 44, 3097 (1996).Google Scholar
6. Katovic, V., Taylor, L. T. and Busch, D. H., J. Am Chem. Soc., 91, 2122 (1969).Google Scholar
7. Katovic, V., Taylor, L. T. and Busch, D. H., Inorg. Chem., 10, 458 (1971).Google Scholar
8. Kolchinki, A. G., Coord. Chem. Rev., 174, 207 (1998).Google Scholar
9. Timken, M. D., Sheldon, R. I., Rohly, W. G. and Mertes, K. B., J. Am Chem. Soc., 102, 4716 (1980).Google Scholar
10. Detert, H. and Sugiono, E., Journal fur Praktische Chemie, 341, 358 (1999).Google Scholar
11. Littke, A. F. and Fu, G. C., J. Am Chem Soc., 123, 6989 (2001).Google Scholar
12. Brittain, H. G., Inorg. Chem., 19, 640 (1980).Google Scholar