Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T16:39:33.440Z Has data issue: false hasContentIssue false

Optical studies of Poly[p-(2,5-didodecylphenylene)ethynylene] in Thin Films

Published online by Cambridge University Press:  01 February 2011

Lynn Rozanski
Affiliation:
rozanski@mail.utexas.edu, University of Texas at Austin, Chemistry and Biochemistry Department, The University of Texas at Austin, CHEM & BIOCHEM DEPT, 1 University Station A5300, Austin, TX, 78712, United States
David A. Vanden Bout
Affiliation:
davandenbout@mail.utexas.edu, University of Texas at Austin, Center for Nano- and Molecular Science,, Chemistry and Biochemistry Department, Austin, TX, 78712, United States
Uwe H.F. Bunz
Affiliation:
uwe.bunz@chemistry.gatech.edu, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
Get access

Abstract

Unlike many other conjugated polymers popular for use in LEDs, poly[p-(2,5-didodecylphenylene)ethynylene] (DPPE), shows less interchain interaction between polymer chains after annealing to an ordered film. Evidence of this decreased interchain interaction can be seen in the emission spectra of pristine and annealed films. Thin films of pristine DPPE show a broad featureless green emission, characteristic of an excimer-like state, whereas annealed films blue-shift and become structured, resembling dilute solution emission. DPPE packs into ordered domains after annealing, shown by birefringence, polarization anisotropy NSOM, and x-ray crystallography data. The lack of chromophore interaction in the ordered domains can be explained through a brick-wall-type packing motif, where the polymer backbone is insulated by the side chains of offset neighboring polymers. Electroluminescence spectra of pristine and annealed LEDs are nearly identical, both having green emission, unlike their different photoluminescence spectra. This is evidence that light emission in LEDs comes only from excimer sites within the film, which would indicate a decreased performance for the annealed devices compared to pristine devices. Preliminary data of pristine and annealed LEDs supports this theory, with most pristine devices having a slightly higher electroluminescence intensity compared to annealed devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 (a) Swager, T.M.; Gil, C.J.; Wrighton, M.S. J. Phys. Chem. 1995, 99, 4886. (b) Pschirer, N.G.; Miteva, T.; Evans, U.; Roberts, R.S.; Marshall, A.R.; Neher, D.; Myrick, M.L. Bunz, U.H.F. Chem. Mater. 2001, 13, 2691. (c) Breen, C.A.; Rifai, S.; Bulovic, V.; Swager, T.M. Nano. Lett. 2005, Vol. 5, No. 8, 1597-1601. (d) Montali, A.; Smith, P.; Weder, C. Synthetic Metals 1998, 123.Google Scholar
2 (a) Bunz, U.H.F.; Imhof, J.M.; Bly, R.K.; Bangcuyo, C.G.; Rozanski, L.J.; Vanden Bout, D.A. Macromolecules 2005, 38, 58925896. (b) Kim, Y.; Bouffard, J.; Kooi, S.E.; Swager, T.M. J. Am. Chem. Soc. 2005, 127, 13726.Google Scholar
3 (a) Kim, J.; Swager, T.M. Nature (London) 2001, 411, 1030. (b) Halkyard, C.E.; Rampey, M.E..; Kloppenburg, L.; Neher, D.; Bunz, U.H.F.Macromolecules 1998, 31, 8655.Google Scholar
4 (a) Cornil, J.; dos Santos, D.A.; Crispin, X.; Silbey, R.; Bredas, J.L. J. Am. Chem. Soc. 1998, 120, 1289. (b) Blatchford, J. W.; Jessen, S.W.; Lin, L.B.; Gustafson, T.L.; Fu, D.K.; Wang, H.L.; Swager, T.M.; MacDiarmid, A.G.; Epstein, A.J. Phys. Rev. B 1996, 54, 9180.Google Scholar
5 (a) Schmitz, C.; Pösch, P.; Thelakkat, M.; Schmidt, H.W.; Montali, A.; Feldman, K.; Smith, P.; Weder, C. Adv. Funct. Mater. 2001, 11, No. 1, 41. (b) Ding, L.; Lu, Z.; Egbe, D. A. M.; Karasz, F. E. Macromolecules 2004, 37, 10031.Google Scholar
6 (a) Kim, J.S.; Granström, M.; Friend, R.H.; Johansson, N.; Salaneck, W.R.; Daik, R.; Feast, W.J.; Cacialli, F. J. Appl. Phys. 1988, 84, No. 12, 6859. (b) Xue, J.; Forrest, S.R. J. Appl. Phys. 2004, 95, No. 4, 1869. (c) Chan, I.M.; Hong, F. Thin Solid Films 2003, 444, 254.Google Scholar