Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T04:41:35.311Z Has data issue: false hasContentIssue false

The Optical Properties of ION Implanted Silica

Published online by Cambridge University Press:  10 February 2011

C. C. Smith
Affiliation:
NASA, MSFC, AL, 35812
D. Ila
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL, 35762-1447
E. K. Williams
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL, 35762-1447
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. K. Hensley
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We present the results of our investigation of the change in the optical properties of silica, "suprasil", after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil, name brand of silica glass produced by Hereaus Amersil, which is chemically highly pure with well known optical properties. Both linear and nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants showed strong optical absorption bands in agreement with Mie theory. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arnold, G. W., J. Appl. Phys. 46, 4466 (1975).Google Scholar
2. Arnold, G. W. and Bordes, J. A., J. Appl. Phy. 48, 1488 (1977).Google Scholar
3. Magruder, R. H. III, Zuhr, R. A., Osborne, D. H. Jr, Nucl. Inst. & Meth. in Phys. Res..B99, 590 (1995).Google Scholar
4. Takeda, Y., Hioki, T., Motohiro, T., Noda, S. and Kurauchi, T., Nucl. Instr. Meth. B91, 515519 (1994).Google Scholar
5. White, C. W., Zhou, D. S., Budai, J. D., Zuhr, R. A., Magruder, R. H. and Osborne, D. H., Mat. Res. Soc. Symp. Proc. Vol.316, 499 (1994).Google Scholar
6. Fukumi, K., Chayahara, A., Adachi, M., Kadono, K., Sakaguchi, T., Miya, M., Horino, Y., Kitamura, N., Hayakawa, J., Yamashita, H., Fujii, K. and Satou, M., Mat. Res. Soc. Symp. Proc. Vol. 235, 389399 (1992).Google Scholar
7. Ila, D., Wu, Z., Zimmerman, R. L., Sarkisov, S., Smith, C. C., Poker, D. B., and Hensley, D. K., Mat. Res. Soc. Symp. Proc. Vol.457, 143 (1997).Google Scholar
8. Ila, D., Wu, Z., Smith, C.C., Poker, D. B., Hensley, D. K., Klatt, C., and Kalbitzer, S., Nucl. Instr. Meth. in Phys. Res. B 127, 570 (1997).Google Scholar
9. Mie, G., Ann. Physik 25, 377 (1908).Google Scholar
10. Doyle, W. T., Phys. Rev. 111, 1067 (1958).Google Scholar
11. Ziegler, F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press Inc., New York, 1985).Google Scholar
12. Freire, F. L. and Mariott, G., Mat.Res. Soc. Symp. Proc. Vol.504, 1997, (in press).Google Scholar