Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T23:10:41.590Z Has data issue: false hasContentIssue false

Optical Properties of Anatase, Rutile and Amorphous Phases of TiO2 Thin Films Grown at Room Temperature by RF Magnetron Sputtering

Published online by Cambridge University Press:  11 February 2011

V. M. Naik
Affiliation:
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI
D. Haddad
Affiliation:
Dept. of Physics, Wayne State University, Detroit, MI
R. Naik
Affiliation:
Dept. of Physics, Wayne State University, Detroit, MI
J. Benci
Affiliation:
Dept. of Electrical and Computer Engineering, Wayne State University, Detroit, MI
G. W. Auner
Affiliation:
Dept. of Physics, Wayne State University, Detroit, MI
Get access

Abstract

Anatase (A), rutile (R) and amorphous phase TiO2 thin films have been prepared by RF magnetron sputtering on unheated glass substrates by controlling the total pressure of sputtering gases (Ar + O2) and the substrate bias. The crystal structures of the films were confirmed by x-ray diffraction and Raman scattering. The analysis of optical absorption data for A- TiO2 film shows an energy bandgap (Eg) of 3.2 eV (indirect extrapolation) and ∼ 3.5 eV (direct extrapolation). On the other hand, R-TiO2 film shows Eg ∼ 2.9 eV (indirect) and 3.2 eV (direct). The latter film also shows the presence of amorphous regions with Eg ∼ 3.0 eV (indirect) and 3.8 eV (direct). The bandgap of both the films, obtained using indirect extrapolation, has a value range consistent with the previous measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K., Nature (London) 238, 37 (1972).Google Scholar
Remilard, J.T., McBride, J.R., Nietering, K.E., Drews, A.R. and Zhang, X., J. Phys. Chem. B. 104, 4440 (2000).Google Scholar
Kingon, A. I., Maris, J. P. and Steiffer, S. K., Nature (London) 406, 1032 (2000).Google Scholar
4. O'Regan, B. and Gratzel, M., Nature (London) 353, 737 (1991).Google Scholar
5. Nasu, H., Sato, M., Matsuoka, J., and Kamiya, K., J. Ceram. Soc. Jpn. 104, 777 (1996).Google Scholar
6. Topoglidis, E., Cass, A.E.G., Gilardi, G., Sadeghi, S., Beaumont, N. and Durrant, J.R., Analytical Chem. 70, 5111(1998).Google Scholar
7. Okimura, K., Maeda, N. and Shibata, A., Thin Solid Films, 281–282, 427 (1996).Google Scholar
8. Okimura, K. and Shibata, A., Jpn. J. Appl. Phys. 36, 2849 (1997).Google Scholar
9. Okimura, K., Surface and Coatings Technology, 135, 286 (2001).Google Scholar
10. Ohsaka, T., Izumi, F. and Fujiki, Y., J. Raman Spectrosc. 7, 321 (1978).Google Scholar
11. Porto, S. P. S., Fleury, P. A. and Damen, T. C., Phys. Rev. 154, 522 (1967).Google Scholar
12. Clegg, I. A., Everall, N. J., King, B., Melvin, H. and Norton, C., Appl. Spectrosc. 55, 1138, 2001.Google Scholar
13. Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W., J. Mater. Res. 4, 1246 (1989).Google Scholar
14. Golego, N., Studenikin, S. A., and Cocivera, M., J. Mater Res. 14, 698 (1999), and references there inGoogle Scholar
15. Yoko, T., Yuasa, A., Kamiya, K., and Sakka, S., J. Electrochem. Soc. 138, 2279 (1991).Google Scholar
16. Krishna, M. G., Rao, K. N. and Mohan, S., J. Appl. Phys. 73, 434 (1993), and references there inGoogle Scholar
17. Aoki, A. and Nogami, G., J. Electroche. Soc. 143, L191 (1996).Google Scholar
18. Murakami, M. et al Appl. Phys. Lett. 78, 2664 (2001).Google Scholar