Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-23T08:39:12.261Z Has data issue: false hasContentIssue false

Optical Properties of AlGaAsSb, AlGalnP, AlGaInAs, and GaInAsP for Optoelectronic Applications

Published online by Cambridge University Press:  15 February 2011

M. Linnik
Affiliation:
Materials and Engineering Department, University of Maryland, College Park, MD 20742
A. Christou
Affiliation:
Materials and Engineering Department, University of Maryland, College Park, MD 20742
Get access

Abstract

The authors present calculations of quaternary III–V semiconductor alloy optical properties and the comparison of the theoretical data with available experimental results for AlGaAsSb, AlGaInP, AlGaInAs, and GaInAsP alloys. The investigation includes material's energy bandgap and refractive index calculations as a function of the incident wavelength in the transparent region, as well as the composition of the alloy. Optimization of the quaternary alloy refractive indices was obtained from a semi-empirical dielectric function calculations based on the interband transition contributions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abid, H., Rezki, M., and Aourag, H., Mater. Science and Engin. B41, 314 (1996).Google Scholar
2. Chandra, R., Coldren, L.A., and Strege, K.E., Electron. Lett., 17(1), 6 (1981).Google Scholar
3. Wemple, S.H. and DiDomenico, M., Phys. Rev. B., 3(4), 1338 (1971).Google Scholar
4. Afromowitz, M.A., Solid State Commun., 15, 59 (1974).Google Scholar
5. Buus, J. and Adams, M.J., Solid State Electron Devices, 3, 189 (1979).Google Scholar
6. Utaka, K., Suematsu, Y., Kobayashi, K., and Kawanishi, H., Jpn. J. Appl. Phys., 19, L137 (1980).Google Scholar
7. Burkhard, H., Dinges, H.W., and Kuphal, E., J. Appl. Phys., 53, 655 (1982).Google Scholar
8. Adachi, S., J. Appl. Phys., 53(8), 5862 (1982).Google Scholar
9. Broberg, B., and Lindgren, S., J. Appl. Phys., 55(9), 3376 (1984).Google Scholar
10. Glisson, T.H., Hauser, J.R., Litteljohn, M.A., and Williams, C.K., J. Electr. Mater., 7(1), 1(1978).Google Scholar
11. Williams, C.K., Glisson, T., Hauser, J., and Litteljohn, M.A., J. Electron. Mater., 7(5), 639 (1978).Google Scholar
12. Blum, O., Fritz, I.J., Dawson, L.R., and Drummond, T.J., Electron. Lett., 31(15), 1247 (1995).Google Scholar
13. Blum, O., Fritz, I.J., Dawson, L.R., Howard, A.J., Headley, T.J., and Klein, J.F., Appl. Phys. Lett., 66(3), 329 (1995).Google Scholar
14. Adachi, S., J. Appl. Phys., 61(10), 4869 (1987).Google Scholar
15. Tanaka, H., Kawamura, Y., and Asahi, H., J. Appl. Phys., 59(3), 985 (1986).Google Scholar
16. Mondry, M., Babic, D., Bowers, J., and Coldren, L., IEEE Photon. Techn. Lett. 4(6), 1041(1992).Google Scholar
17. Dwiges, H., Burkhard, H., Losch, R., Nickel, H., and Schlapp, W., Mater. Science and Engin., B12, 174 (1993).Google Scholar
18. Bernardi, C., Morasca, M., Rigo, C., Sordo, B., and Stano, A., J. Appl. Phys., 68(12), 6512(1990).Google Scholar
19. Jensen, B., and Torabi, A., J. Appl. Phys., 54(6), 3623 (1983).Google Scholar