Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-29T22:59:55.111Z Has data issue: false hasContentIssue false

Optical Properties and Morphology of Gan Grown by MBE on Sapphire Substrates

Published online by Cambridge University Press:  15 February 2011

E. Tuncel
Affiliation:
Solid State Electronics Laboratory, CIS 329, Stanford University, CA 94305–4075
D. B. Oberman
Affiliation:
Solid State Electronics Laboratory, CIS 329, Stanford University, CA 94305–4075
H. Lee
Affiliation:
Solid State Electronics Laboratory, CIS 329, Stanford University, CA 94305–4075
T. Ueda
Affiliation:
Solid State Electronics Laboratory, CIS 329, Stanford University, CA 94305–4075
J. S. Harris Jr.
Affiliation:
Solid State Electronics Laboratory, CIS 329, Stanford University, CA 94305–4075
Get access

Abstract

A series of GaN films grown by MBE on sapphire substrates with different nitrogen sources are characterized by optical transmission, spectroscopic ellipsometry (SE), photoluminescence (PL) and cross-sectional atomic force microscopy (AFM). The film thicknesses determined from broad spectral range transmission measurements and the AFM images are used in the analysis of the SE spectra. Interface roughnesses between the constituent layers, such as the substrate, the buffer and GaN layers are included in the modelling of the SE spectra and are also imaged by cross-sectional AFM. An effective medium type model is used for the modelling of interface and surface roughnesses in the SE spectra. The optical constants of the films in the band edge spectral range are determined in such a way as to simultaneously satisfy the transmission and the ellipsometry data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amano, H., Watanabe, N., Koide, N., Akasaki, I., Jpn. J. Appl. Phys. 32, L1000 (1993).Google Scholar
2. Nakamura, S., et al., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
3. Menniger, J., Jahn, U., Brandt, O., Yang, H., Ploog, K., Phys. Rev. B 53, 1881 (1996).Google Scholar
4. Trager-Cowan, C., O‘Donnell, K. P., Hooper, S. E., Foxon, C. T., Appl. Phys. Lett. 68, 355 (1996).Google Scholar
5. Oberman, D. B., Lee, H., Gotz, W. K., Harris, J. S. J., J. Cryst. Growth 150, 912 (1995).Google Scholar
6. Cunningham, R. D., Brander, R. W., Knee, N. D., Wickenden, D. K., J. Lumin. 5, 21 (1972).Google Scholar
7. Ejder, E., Phys. Stat. Sol. (a) 6, 445 (1971).Google Scholar
8. Logothetidis, S., Petalas, J., Cardona, M., Moustakas, T. D., Phys. Rev. B 50, 18017 (1994).Google Scholar
9. Azzam, R. M. A., Bashara, N. M., Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977).Google Scholar
10. Aspnes, D. E., Theeten, J. B., Hottier, F., Phys. Rev. B 20, 3292 (1979).Google Scholar
11. Adachi, S., Phys. Rev. B 38, 12345 (1988).Google Scholar
12. Bloom, S., Harbeke, G., Meier, E., Ortenburger, I. B., Phys. Stat. Sol. (b) 66, 161 (1974).Google Scholar