Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-13T21:41:49.256Z Has data issue: false hasContentIssue false

Optical Properties and Dynamics of Molecular Excitons in Oligothiophenes

Published online by Cambridge University Press:  10 February 2011

R. Tubino
Affiliation:
Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano, Italy
G. Bongiovanni
Affiliation:
Dipartimento di Fisica, Università di Cagliari, via Ospedale 72,09124 Cagliari, Italy
A. Mura
Affiliation:
Dipartimento di Fisica, Università di Cagliari, via Ospedale 72,09124 Cagliari, Italy
R. Bosisio
Affiliation:
Istituto di Chimica delle Macromolecole (C.N.R.), via Bassini 15, 20133 Milano, Italy
C. Botfa
Affiliation:
Istituto di Chimica delle Macromolecole (C.N.R.), via Bassini 15, 20133 Milano, Italy
G. Di Silvestrot
Affiliation:
Dipartimento di Chimica, Università di Milano, via Venezian 21, 20133 Milano, Italy
Get access

Abstract

CW absorption and emission spectra as well as time-resolved photoemission dynamics have been employed to detect the evolution of the first excited electronic states and the associated spectroscopical changes in passing from the isolated molecules to the aggregated state in thiophene oligomers. To this end a novel form of inclusion compound in PHTP in which the molecules are electronically decoupled in the solid state has been studied, thus avoiding the complications associated with the change in conformation occurring upon dissolution. The experimental data are interpreted in terms of the molecular exciton model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skotheim, T., Handbook of Conducting Polymers (Marcel Dekker, New York, 1986).Google Scholar
2. Hayashi, S., Kaneto, K. and Yoshino, K., Solid State Commun., 61, 249 (1987).Google Scholar
3. Vardeny, Z., Ehrenfreund, E., Shinar, J. and Wudl, F., Phys. Rev. B, 35, 2498 (1987).Google Scholar
4. Taliani, C., Danieli, R., Lazzaroni, R., Periasamy, N., Ruani, G., Zamboni, R., Mol. Cryst. Liq. Cryst., 217, 101 (1992).Google Scholar
5. Eckert, R., Kuhn, H., Z. Elektrochem., 64, 356 (1960).Google Scholar
6. Chosrovian, H., Rentsch, S., Grebner, D., Dahm, D. U., Birckner, E., Naarmann, H., Synthetic Metals, 60, 23 (1993).Google Scholar
7. Botta, C., Luzzati, S., Tubino, R., Bradley, D. C. C. and Friend, R. H., Phys. Rev.B, 48 14809 (1993).Google Scholar
8. Allegra, G., Farina, M., Immirzi, A., Colombo, A., Rossi, U., Broggi, R., Natta, G., J. Chem. Soc. (B), 1020 (1967).Google Scholar
9. Bosisio, R. et al. in preparation.Google Scholar
10. Davydov, A. S., Theory of Molecular Excitons (Plenum Press, New York, 1971) pp 2397.Google Scholar
11. Porzio, W., Destri, S., Mascherpa, M., Brückner, S., Acta Polymer, 44, 266 (1993).Google Scholar
12. Servet, B., Ries, S., Trotel, M., Alnot, P., Horowitz, G., Gamier, F., Adv. Mater., 6, 461 (1993).Google Scholar
13. Movaghar, B., Grünewald, M., Ries, B., Bäissler, H. and Würtz, D., Phys. Rev. B, 33, 5545 (1986).Google Scholar
14. Richert, R. and Bässler, H., J. Chem. Phys., 84, 3567 (1986).Google Scholar
15. Sher, H., Shlesinger, M. F. and Bendler, J. T., Physics Today, 26, 26 (1991).Google Scholar