Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T02:09:42.387Z Has data issue: false hasContentIssue false

Optical Gain in Foerster Energy Transfer Based Organic Guest-Host-Systems

Published online by Cambridge University Press:  31 January 2011

Torsten Rabe
Affiliation:
torsten.rabe@iap.fraunhofer.de, Fraunhofer IAP, NanoPolyPhotonics, Potsdam-Golm, Germany
Sebastian Döring
Affiliation:
sebastian.doering@iap.fraunhofer.de, Fraunhofer IAP, NanoPolyPhotonics, Potsdam-Golm, Germany
Niko Hildebrandt
Affiliation:
niko.hildebrandt@iap.fraunhofer.de, Fraunhofer IAP, NanoPolyPhotonics, Potsdam-Golm, Germany
Thomas Riedl
Affiliation:
t.riedl@tu-bs.de, Technical University of Braunschweig, Institute of High Frequency Technology, Braunschweig, Germany
Wolfgang Kowalsky
Affiliation:
w.kowalsky@tu-bs.de, Technical University of Braunschweig, Institute of High Frequency Technology, Braunschweig, Germany
Ullrich Scherf
Affiliation:
scherf@uni-wuppertal.de, Universität Wuppertal, Makromolekulare Chemie, Wuppertal, Germany
Get access

Abstract

We study the optical gain for various doping concentrations in a dye doped polymer (poly-[9,9-dioctylfluorene] with 6,6'-[2,2'-octyloxy-1,1'-binaphthyl] spacer groups (BN-PFO) doped by the stilbene dye 1,4-bis[2-[4-[N,N-di[p-tolyl]amino]phenyl]vinyl-benzene] (DPAVB)). In such a guest-host-system (GHS) the occupation of the upper laser level (dopant site) is due to Förster energy transfer (FET), which strongly depends on the donor acceptor distance and hence on the concentration of the laser dye. Therefore, the doping concentration is varied over a wide range and the gain coefficients are measured at various excitation densities to analyze the stimulated emission cross section.

For the investigated GHS maximum gain coefficients up to ∼340 1/cm were found at absorbed pump energy densities of around 50 μJ/cm2. It will be shown that the stimulated emission cross section (σ = 1.8 × 10−16 cm2) is concentration independent which is quite different to a recently investigated small molecule based GHS. These effects will be discussed considering the rate and exciton diffusion constants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kozlov, V. G., Bulović, V., Burrows, P. E. and Forrest, R., Nature 389, 362 (1997)Google Scholar
[2] Hide, F., Díaz-García, M. A., Schwartz, B. J., Andersson, M. R., Pei, Q. and Heeger, A. J., Science 273, 1833 (1996)Google Scholar
[3] Berggren, M., Dodabalapur, A., Slusher, R. E., Bao, Z., Nature 389, 466 (1997)Google Scholar
[4] Schneider, D., Rabe, T., Riedl, T., Dobbertin, T., Kröger, M., Becker, E., Weimann, T., Wang, J. and Hinze, P., Appl. Phys. Lett. 85, 1886 (2004)Google Scholar
[5] Schneider, D., Rabe, T., Riedl, T., Dobbertin, T., Kröger, M., Becker, E., Johannes, H.-H., Kowalsky, W., Weimann, T., Wang, J. and Hinze, P., Appl. Phys. Lett. 85, 1659 (2004)Google Scholar
[6] Kozlov, V. G., Bulović, V., Burrows, P. E., Baldo, M., Khalfin, V. B., Parthasarathy, G., Forrest, S. R., You, Y. and Thompson, M. E., J. Appl. Phys. 84, 4096 (1998)Google Scholar
[7] Lakowicz, J.R., Principles of Fluorescence Spectroscopy, Third Ed., Springer, New York (2006)Google Scholar
[8] Shaklee, K. L. and Leheny, R. F., Appl. Phys. Lett. 18, 475 (1971)Google Scholar
[9] Rabe, T., Hoping, M., Schneider, D., Becker, E., Johannes, H.-H., Kowalsky, W., Weimann, T., Wang, J., Hinze, P., Nehls, B. S., Scherf, U., Farrell, T. and Riedl, T., Adv. Funct. Mater. 15, 1188 (2005)Google Scholar
[10] Karnutsch, C., Gaertner, C., Haug, V., Lemmer, U., Farrell, T., Nehls, B.S., Scherf, U., Wang, J., Weimann, T., Heliotis, G., Pflumm, C., deMello, J.C. and Bradley, D.D.C., Appl. Phys. Lett. 89, 201108 (2006)Google Scholar
[11] Ichikawa, M., Tachi, T., Satsuki, M., Suga, S., Koyama, T. and Taniguchi, Y., J. Photochem. Photobiol. A 158, 219 (2003)Google Scholar
[12] Kobayashi, T., Blau, W. J., Tillmann, H. and Hörhold, H.-H., IEEE J. Quantum Electron. 39, 664 (2003)Google Scholar
[13] Jordan, G., Flämmich, M., Rüther, M., Kobayashi, T., Blau, W. J., Suzuki, Y. and Kaino, T., Appl. Phys. Lett. 88, 161114 (2006)Google Scholar
[14] Riedl, T., Rabe, T., Johannes, H. H., Kowalsky, W., Wang, J., Weimann, T., Hinze, P., Nehls, B. S., Farrell, T. and Scherf, U., Appl. Phys. Lett. 88, 241116 (2006)Google Scholar
[15] Rabe, T., Goerrn, P., Riedl, T. and Kowalsky, W., Proc. SPIE 66551F (2007)Google Scholar
[16] Lee, J.-H., Teng, C.-C., Lin, J.-H., Lin, T.-C. and Yang, C. C., Proc. SPIE 5632, 66 (2005)Google Scholar
[17] Lyons, B. P. and Monkman, A. P., Phys. Rev. B 71, 235201 (2005)Google Scholar
[18] Walser, A. D., Priestley, R. and Dorsinville, R., Synth. Met. 102 1552 (1999)Google Scholar