Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T20:54:53.524Z Has data issue: false hasContentIssue false

Optical Fiber Switch Based on Carbon Nanotube Actuation

Published online by Cambridge University Press:  15 February 2011

Leonard S. Fifield
Affiliation:
Department of Chemistry University of Washington Seattle, WA 98195-1700, U.S.A.
Anne M. Zipperer
Affiliation:
Department of Chemistry University of Washington Seattle, WA 98195-1700, U.S.A.
Ray H. Baughman
Affiliation:
NanoTech Institute University of Texas at Dallas Richardson, TX 75083-0688, U.S.A.
Larry R. Dalton
Affiliation:
NanoTech Institute University of Texas at Dallas Richardson, TX 75083-0688, U.S.A.
Get access

Abstract

Carbon nanotubes represent an attractive material option for many applications, including electromechanical actuators. Though single wall carbon nanotubes exhibit advantageous actuator properties, such as large force generation and low operating voltage, functional devices based on carbon nanotube actuation have not yet been reported. Here we describe the fabrication and performance evaluation of a 1×2 electromechanical optical fiber switch based on a carbon nanotube actuator. The side-to-side movement of the input fiber of the device between two output fibers is a result of the actuation of an assembly of carbon nanotubes that have been attached to the fiber. The intensities of optical signals exiting the two outputs are monitored, and switching times down to 30 ms are demonstrated. Initial results indicate that mechanical optical switches using carbon nanotube actuators may be preferable to switches using alternative technologies due to the inexpensive assembly, low operating power, potentially high switching speeds, and potentially low insertion loss of the carbon nanotube based devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baughman, R.H., Zakhidov, A.A., Heer, W.A. de, Science 297, 787792 (2002).Google Scholar
2. Odom, T.W., Huang, J.-L., Lieber, C.M., Ann. N.Y. Acad. Sci. 960, 203215 (2002).Google Scholar
3. Dai, H., Acc. Chem. Res. 35, 10351044 (2002).Google Scholar
4. Baughman, R.H., Synth. Met. 78, 339353 (1996).Google Scholar
5. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., Rossi, D. De, Rinzler, A.G., Jaschinksi, O., Roth, S., Kertesz, M., Science 284, 13401344 (1999).Google Scholar
6. Kertesz, M., Sun, G.Y., Kurti, J., Baughman, R.H., Polym. Mater. Sci. Eng. 83, 519 (2000).Google Scholar
7. Sun, G., Kurti, J., M, Kertesz, Baughman, R.H., JACS 124, 1507615080 (2002).Google Scholar
8. Gartstein, Y.N., Zakhidov, A.A., Baughman, R.H., Phys. Rev. Lett. 89, 045503/1–045503/4 (2002).Google Scholar
9. Fraysse, J., Minett, A.I., Gu, G., Roth, S., Rinzler, A. G., Baughman, R.H., Curr. App. Phys. 1, 407411 (2001).Google Scholar
10. Roth, S., Baughman, R.H., Curr. App. Phys. 2, 311314 (2002).Google Scholar
11. Field, L.A., Burriesci, D.L., Robrish, P.R., Ruby, R.C., Tranducers '95 / Eurosensors IX, 344347 (1995).Google Scholar
12. Hoffmann, M., IEEE J. of Selected Topics in Quantum Electronics 5, 4651 (1999).Google Scholar
13. Mazzoldi, A., Rossi, D. De, Proc. SPIE-(Electroactive Polymer Actuators and Devices (EAPAD) 3987, 273280 (2000).Google Scholar
14. Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley, R.E., App. Phys. A: Mat. Sci. & Proc. A67, 2937 (1998).Google Scholar