Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T03:01:27.805Z Has data issue: false hasContentIssue false

Optical Emission Study of the Energy Levels of Ga-VACANCY/HYDROGEN Complexes in N and P-TYPE GaAs

Published online by Cambridge University Press:  03 September 2012

A. Amore Bonapasta
Affiliation:
CNR-ITSE, Montelibretti, Roma, Italy
B. Bonanni
Affiliation:
Dipartimento di Fisica, Università ‘La Sapienza’, 00185 Roma, Italy
M. Capizzi
Affiliation:
Dipartimento di Fisica, Università ‘La Sapienza’, 00185 Roma, Italy
L. Cherubini
Affiliation:
Dipartimento di Fisica, Università ‘La Sapienza’, 00185 Roma, Italy
V. Emiliani
Affiliation:
Dipartimento di Fisica, Università ‘La Sapienza’, 00185 Roma, Italy
A. Frova
Affiliation:
Dipartimento di Fisica, Università ‘La Sapienza’, 00185 Roma, Italy
F. Sarto
Affiliation:
Dipartimento di Fisica, Università ‘La Sapienza’, 00185 Roma, Italy
Get access

Abstract

The formation of Ga-vacancy/hydrogen complexes in GaAs has been detected via photoluminescence measurements. Different degrees of hydrogénation can be achieved by low-energy H- or D-ion irradiation from a Kaufman source. The volume incorporation, for equal treatment, is dependent upon the density of impurities and defects where H can bind. In originally p-type MBE-GaAs, prolonged hydrogen treatments lead to the appearance of three emission structures in the range 1.15–1.34 eV. The results are explained in terms of transitions to different states of charge of gallium vacancies trapping one or more H-atoms, the activity of the individual states being dependent upon the H-dose and the nature of the laser excitation. The model is supported by comparison with the changes in the Ga-vacancy/donor emission band in degenerate n-type samples, as it evolves, from the virgin condition, through hydrogenation. The present observation provides also valid support to the creation, in p-type material, of a semi-shallow donor associated to H trapped along the As-Ga bond, in the immediate neighborhood of the gallium vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Queisser, H. J. and Fuller, C. S., J. Appl. Phys. 37, 4895 (1966).Google Scholar
2. Williams, E. W., Phys. Rev. 168, 922 (1968).CrossRefGoogle Scholar
3. Xu, Hongqui and Lindefelt, U., Phys. Rev. B41, 5979 (1989).Google Scholar
4. Capizzi, M., Coluzza, C., Emiliani, V., Franki, P., Frova, A., and Sarto, F., Materials Science Forum 83–87, 599 (1992).Google Scholar
5. Capizzi, M., Coluzza, C., Emiliani, V., Franki, P., Frova, A., Sarto, F., Amore Bonapasta, A., Sobiesierski, Z., and Sacks, R. N., to appear in J. Appl. Phys. (1992).Google Scholar
6. Sobiesierski, Z., Woolf, D. A., Westwood, D. I., Frova, A., and Coluzza, C., Solid St. Commun. 81, 125 (1992).CrossRefGoogle Scholar
7. Kassel, L., Garland, J. W., Raccah, P.M., Coluzza, C., Neglia, A., and DiCarlo, A., Proceedings of ICSFI-3 (to appear in Applied Surface Science, 1991).Google Scholar
8. Wong, D., Schlesinger, T. E., and Milnes, A. G., Solar Cells 27, 419 (1989).Google Scholar
9. Wong, D., Schlesinger, T. E., and Milnes, A. G., J. Appl. Phys. 68, 5588 (1990).Google Scholar
10. Srivastava, P. C., Chandra, S., and Singh, U. P., Semicond. Sci. Technol. 6, 1126 (1991).Google Scholar
11. Pavesi, L., Doctoral Thesis #898, EPF Lausanne, 1990;Google Scholar
Pavesi, L. and Giannozzi, P., Phys. Rev. B43, 2446 (1991).Google Scholar
12. Amore Bonapasta, A., LDA calculations to be published separately.Google Scholar
13. See, for example, Klick, C. C. and Schulman, H., in Solid State Physics, edited by Seitz, F. and Turnbull, D., Academic Press Inc., New York (1957), Vol. 5, p. 100.Google Scholar