Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T23:49:01.491Z Has data issue: false hasContentIssue false

Optical Characterization of the Visible Photoluminescence from Porous Silicon

Published online by Cambridge University Press:  15 February 2011

H. D. Fuchs
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80
M. S. Brandt
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80
M. Stutzmann
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80
J. Weber
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80
Get access

Abstract

The visible photoluminescence of electrochemically etched silicon wafers is studied by cw- and pulsed-laser excitation. Raman data and infrared transmission measurements on the same samples prove the presence of oxygen and hydrogen in different bonding configurations in the luminescent layers. Identical optical properties are found for chemically synthesized siloxene (Si6O3H6) and its derivates. We present evidence that the origin of the strong room temperature luminescence in “porous” silicon can be traced to siloxene derivates present in the samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Canham, L.T., Barraclough, K.G., and Robbins, D.J., Appl. Phys. Lett. 51, 1509 (1987).CrossRefGoogle Scholar
[2] Maria, D.J., Kirtley, J.R., Penkulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T.N., Cutro, J.A., and Brorson, S.D., J. Appl. Phys. 56, 401 (1984).Google Scholar
[3] Furukawa, S. and Miyasato, T., Phys. Rev. B 38, 5726 (1988).CrossRefGoogle Scholar
[4] Takagi, H., Ogawa, H., Yamazaki, Y., Johizaki, A., and Nakagari, T., Appl. Phys. Lett 56, 2376 (1990).Google Scholar
[5] Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
[6] Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1990).Google Scholar
[7] Bsiesy, A., Vial, J.C., Gaspard, F., Ilerino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A., and Bomchil, G., Surface Science 254, 195 (1991).Google Scholar
[8] Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
[9] Kautsky, H. and Zocher, H., Z. Phys. 9, 267 (1922).CrossRefGoogle Scholar
[10] Hengge, E., Fortschr. Chem. Forsch. 51, 92 (1974).Google Scholar
[11] Kautsky, H., Z. Anorg. Chemie 117, 209 (1921).Google Scholar
[12] Hengge, E., Fortschr. Chem. Forsch. 9, 145 (1967).CrossRefGoogle Scholar
[13] Wöhler, F., Lieb. Ann. 127, 275 (1863).CrossRefGoogle Scholar
[14] Ubera, H., Imura, T. Hiraki, A., Hirabayashi, I., and Morigaki, K., J. Non-Cryst. Solids 59 & 60, 641 (1983).Google Scholar
[15] Hirabayashi, I. and Morigaki, K., J. Non-Cryst. Solids 59 & 60, 645 (1983).CrossRefGoogle Scholar
[16] Brandt, M.S., Fuchs, H.D., Stutzmann, M., and Weber, J., Solid State Commun., accepted for publication.Google Scholar
[17] Goodes, S.R., Jenkin, T.E., Beale, M.I.J., Benjamin, J.D., and Pickering, C., Semicond. Sci. Technol. 3, 483 (1988).Google Scholar
[18] Campbell, I.H. and Fauchet, P.M., Solid State Comm. 58, 739 (1986).Google Scholar
[19] Fuchs, H.D. et al., to be published.Google Scholar
[20] Hirabayashi, I., Morigaki, K., and Yamanaka, S., J. Phys. Soc. Jap. 52, 671 (1983).Google Scholar