Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T12:14:16.885Z Has data issue: false hasContentIssue false

Optical Characterization of Heavily Carbon Doped GaAs

Published online by Cambridge University Press:  26 February 2011

Lei Wang
Affiliation:
Department of Materials Science and Engineering University of California, Los Angeles, Los Angeles, Ca 90024
N. M. Haegel
Affiliation:
Department of Materials Science and Engineering University of California, Los Angeles, Los Angeles, Ca 90024
Get access

Abstract

Optical measurements have been performed on heavily carbon doped GaAs layers grown on semi-insulating GaAs substrates by MOMBE (metal-organic molecule beam epitaxy). Photoluminescence excitation (PLE) spectroscopy was used to measure the onsets of optical absorption in these GaAs:C epilayers. It was found that in samples with free carrier concentrations of 6.2×1019, 1.6×1020, and 4.1×1020cm−3, optical absorption begins at 1.40, 1.52, and 1.53 ev, respectively. Combined with the band gap narrowing data from photoluminescence (PL) spectra, we estimated Fermi level locations relative to the top of the valence band. We also measured reflectance in the near infrared region and estimated the effective mass of free holes using a classical two-oscillator model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] Saito, K., Tokumitsu, E., Akatsuka, T., Miyauchi, M., and Yamada, T., J. Appl. Phys. 64, 3975 (1988).Google Scholar
[2] Yamada, T., Tokumitsu, E., Saito, K., Akatsuka, T., Miyauchi, M., Konagai, M., and Takahashi, K. J. Cryst. Growth 95, 145 (1989).Google Scholar
[3] Abernathy, C. R., Pearson, S. J., Caruso, R., Ren, F., and Kovalchik, J., Appl. Phys. Lett. 55, 1750 (1989).CrossRefGoogle Scholar
[4] Lowney, J. R., J. Appl. Phys. 60, 2854 (1986).Google Scholar
[5] Aitchison, B. J., Haegel, N. M., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett. 56, 1154 (1990).Google Scholar
[6] Burstein, E., Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
[7] Olego, D. and Cardona, M., Phys. Rev. B22, 886 (1980).CrossRefGoogle Scholar
[8] Aspnes, D. and Studna, A., Phys. Rev. 27, 985 (1983).Google Scholar
[9] Casey, H. C. Jr, Sell, D. D., and Wecht, K. W., J. Appl. Phys. 46, 250 (1975).CrossRefGoogle Scholar
[10] Twardowski, A. and Hermann, C., Phys. Rev. B32, 8253 (1985).Google Scholar
[11] Borghs, G., Bhattacharyya, K., Deneffe, K., Van Mieghem, P., and Mertens, R., J. Appl. Phys. 66, 4381 (1989).CrossRefGoogle Scholar
[12] Szmyd, D., Porro, P., and Majerfeld, A., J. Appl. Phys. 68, 2367 (1990).CrossRefGoogle Scholar
[13] Blakemore, J., Solid State Physics, 2nd ed. (Saunders, Cambridge, UK, 1984), p302.Google Scholar
[14] Bennett, H. and Lowney, J., J. Appl. Phys. 62, 521 (1987).Google Scholar
[15] Klauder, J. R., Ann. Phys. 14, 43 (1961).Google Scholar
[16] Abram, R. A., Childs, C. N., and Saunderson, A., J. Phys. C 17, 6105 (1984).CrossRefGoogle Scholar
[17] Holm, R. T., Gibson, J. W., and Palik, E. D., J. Appl. Phys. 48, 212 (1977).Google Scholar
[18] Huberman, M. L., Ksendzov, A., Larsson, A., Terhune, R., and Maserjian, J., Phys. Rev. B44, 1128 (1991).Google Scholar