Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-13T05:55:33.128Z Has data issue: false hasContentIssue false

Optical Band Gap of Diamond-Like Carbon Films as a Function of RF Substrate Bias

Published online by Cambridge University Press:  26 February 2011

P. W. Pastel
Affiliation:
Dept. of Computer Science and Electrical Engineering, University of Vermont, Burlington, VT. 05405
W. J. Varhue
Affiliation:
Dept. of Computer Science and Electrical Engineering, University of Vermont, Burlington, VT. 05405
Get access

Abstract

Diamond-like carbon films have been deposited with a low temperature 2.45 GHz electron cyclotron resonance plasma enhanced chemical vapor deposition system. The bombarding ion energy was independently controlled with a RF bias to the substrate. The production rate of reactant species and the impinging ion energy are decoupled with this system. The optical band gap decreased from 2.7 to 1.2 eV as substrate bias was increased from 0 to -140 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angus, J., Koidl, P. &Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. &Jansen, F. (CRC Press, Inc., Boca Raton, 1986)Google Scholar
2. DeVries, R.C., in Annual Review Materials Science, edited by Huggins, R.A., Giordmaine, J.A. & Wachtman, Jr., J.B. (Annual Reviews Inc., 1987) 161187.Google Scholar
3. Deshpandev, C. & Bunshah, R., J. Vac. Sci. Technol. A 7 (3), 22942302 (1989).Google Scholar
4. Messier, R., et al., Thin Solid Films 153 19 (1987).Google Scholar
5. Spitsyn, B., Bouilov, L. & Derjaguin, B., in Progress in crystal growth and characterization, edited by Mullin, J. (Pergamon Press, Oxford, 1988) 79170.Google Scholar
6. Bubenzer, A., Dischler, B., Brandt, G. & Koidl, P., J. Appl. Phys. 54 (8), 45904595 (1983).Google Scholar
7. Frenklach, M. & Spear, K., J. Mat. Res. 3 (1), 133140 (1988).Google Scholar
8. Matsuoka, M. & Ono, K., Appl. Phys. Lett. 50 (26), 18641866 (1987).Google Scholar
9. Matsuo, S. & Kiuchi, M., Jpn. J. Appl. Phys. 22 (4), L210–L212 (1983).Google Scholar
10. Bredas, J. & Street, G., J. Phys. C. 18 L651–L655 (1985).Google Scholar
11. Robertson, J. & O'Reilly, E., Phys. Rev. B 35 (6), 29462957 (1987).Google Scholar
12. Tamor, M., Haire, J., Wu, C. & Hass, K., App. Phys. Lett. 54 (2), 123125 (1989).Google Scholar
13. Dischler, B., Bubenzer, A. & Koidl, P., Appl. Phys. Lett. 42 (8), 636638 (1983).Google Scholar
14. Angus, J. & Jansen, F., J. Vac. Sci. Technol. A 6 (3), 17781782 (1988).Google Scholar