Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T17:10:01.244Z Has data issue: false hasContentIssue false

Optical and Dielectric Properties of Eu- and Y-Polytantalate Thin Films

Published online by Cambridge University Press:  01 February 2011

Vladimir Vasilyev
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA, Mark Roland, Solid State Scientific Corp., Hollis, NH
Alvin Drehman
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA, Mark Roland, Solid State Scientific Corp., Hollis, NH
Helen Dauplaise
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA, Mark Roland, Solid State Scientific Corp., Hollis, NH
Lionel Bouthillette
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA, Mark Roland, Solid State Scientific Corp., Hollis, NH
Alex Volinsky
Affiliation:
University of South Florida, Department of Mechanical Engineering, Tampa, FL Stefan Zollner, Wentao Qin, Motorola, Inc. Advanced Products R&D Laboratory MD EL622, Tempe, AZ
Get access

Abstract

Due to their highly efficient photo-luminescent (PL) characteristics, the physical properties of rare-earth polytantalates, RETa7O19 (RE=Eu and Y) were further studied. AFM, SEM, HRTEM, x-ray reflectometry, spectroscopic ellipsometry and standard dielectric testing were used to determine film thickness, roughness, index of refraction, band-gap, dielectric constant, leakage current and breakdown field for as-deposited (amorphous) and post-annealed (crystalline) films. Structural and morphological properties of the Film/SiO2/Si interfaces were also examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vasilyev, V., Drehman, A., and Bouthillette, L., MRS Symp. Proc., 749 (2003) W5.8.1. Google Scholar
2. Young, P., J. Appl. Phys. 47 (1), 235247 (1976).Google Scholar
3. Chaneliere, C., Autran, J.L., Devine, R.A.B., Balland, B., Mater. Sci. Eng., R22, 269322 (1998).Google Scholar
4. Onisawa, K., Fuyama, M., Tamura, K., Taguchi, K., Nakayama, T., and Ono, Y.A., J. Appl. Phys., 68 (2), 719723 (1990).Google Scholar
5. Paskaeva, A., Atanassova, E., and Dimitrova, T., Vacuum, 58, 470477 (2000).Google Scholar
6. Lin, E.K., Wu, W.W., Jin, C., Wetzel, J.F., MRS Proc. 612 (2000) D4.1.1.Google Scholar
7. Kohli, S., Niles, D., Ritner, C.D., Dorhout, P.K., Advances in X-Ray Analysis, 45, 352 (2002).Google Scholar
8. Wormington, M., Panaccione, C., Matney, K.M., Bowen, D.K., Phil. Trans. R. Soc. Lond. A357, 28272848 (1999).Google Scholar
9. Tompkins, H. G. and McGahan, W. A., “Spectroscopic Ellipsometry and Reflectometry: A User's Guide”, J. Wiley & Sons, NY (1999).Google Scholar
10. Vasilyev, V. and Pinaeva, M.M., Rus. J. Inorg. Chem., 25 (4), 500504 (1980).Google Scholar
11. Gatehouse, B.M., J. Solid State Chem., 27, 209 (1979).Google Scholar
12. Langenbach-Kuttert, B., Sturm, J., Gruehn, R., Z. Anorg Allg Chem., 543, 117128 (1986).Google Scholar
13. Shaffrath, U. and Gruehn, R., Z. Anorg. Allg. Chem., 588, 4354 (1990).Google Scholar
14. Guo, G.-C., Zhuang, J.-N., Wang, Y.-G., Chen, J.-T., Zhuang, H.-H., Huamg, J.-S. and Zhang, Q.-E., Acta Cryst., C52, 57 (1996).Google Scholar
15. Cavalli, E., Leonyuk, L.I., and Leonyuk, N.I.., J. of Crystal Growth, 224, 6773 (2001).Google Scholar
16. Vasilyev, V., Pinaeva, M., and Pinaev, G., Doklady Physics, 48 (1), 2123 (2003).Google Scholar
17. Tauc, J.. In “Optical Properties of Solids”, Ed. Abeles, By F., North Holland (1969).Google Scholar