Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-26T04:29:42.684Z Has data issue: false hasContentIssue false

Onion-Like Nanoscale Structures and Fullerene-Type Cages Formed by Electron Irradiation of Turbostratic Bx.C1-x (x<0.2)

Published online by Cambridge University Press:  10 February 2011

D. Golberg
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, JAPAN, golberg@nirim.go.jp
Y. Bando
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, JAPAN, golberg@nirim.go.jp
K. Kurashima
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, JAPAN, golberg@nirim.go.jp
T. Sasaki
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, JAPAN, golberg@nirim.go.jp
Get access

Abstract

Flakes of CVD grown BxC1-x, (x<0.2) films were exposed to intense electron irradiation (flux density up to ∼100 A/cm2) in a 300 kV high resolution electron microscope equipped with a field emission gun. The starting flakes revealed a turbostratic BxC1-x structure. The composition of the starting materials and irradiated products was determined by using electron energy loss spectroscopy (EELS). Depending on the electron dose applied, irradiation of the turbostratic material led to formation of soap-bubble-like irregularly-shaped objects (linear dimensions of ∼2–5 nm), onion- and semi-onion-like structures (d∼10nm), nested fullerenes (3–14 shells) and elementary fullerene-type cages (d∼0.7 nm). It is thought that these curled and closed nanostructures arise from a continuous bending of the hexagonal Bx C1-x sheets under electron irradiation. Finally, some possible structural models of BxC1-x fullerenes are considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. and Smalley, R.E., Nature 318, 162 (1985).Google Scholar
2. Guo, T., Jin, C. and Smalley, R.E., J. Phys. Chem. 95, 4948 (1991).Google Scholar
3. Pradeep, T., Vijayakrishnan, V., Santra, A.K. and Rao, C.N.R., J. Phys. Chem. 95, 10564 (1991).Google Scholar
4. Kimura, T., Sugai, T., Shinohara, H., Chem. Phys. Lett. 256, 269 (1996).Google Scholar
5. Jones, L.E. and Thrower, P.A., J de Chem. Phys. 84, 1431 (1987).Google Scholar
6. Ugarte, D., Nature 359, 707 (1992).Google Scholar
7. Stephan, O., Bando, Y., Dussarrat, C., Kurashima, K., Sasaki, T., Tamiya, T. and Akaishi, M., Appl. Phys. Lett. 70, 2383 (1997).Google Scholar
8. Banhart, F., Zwanger, M., Muhr, H.-J., Chem. Phys. Lett. 231, 98 (1994).Google Scholar
9. Stephan, O., Bando, Y., Loiseau, A., Willaime, F., Shramchenko, N., Tamiya, T. and Sato, T., Chem. Phys. Lett. (1997), submitted.Google Scholar
10. Fuller, T. and Banhart, F., Chem. Phys. Lett. 254, 372 (1996).Google Scholar
11. Wang, Q., Chen, L.-O., and Annett, J.F., Phys. Rev. B54, 4, R2271 (1996).Google Scholar
12. Slater, J.C., Ouantum Theory of Molecules and Solids Vol.2, (McGraw-Hill, New York, 1965), p. 55.Google Scholar
13. Muhr, H.-J., Nesper, R., Schnyder, B. and Kotz, R., Chem. Phys. Lett. 249, 399 (1996).Google Scholar
14. Scuseria, G.E., Science 271, 942 (1996).Google Scholar
15. lijima, S., J. Cryst. Growth 50, 675 (1980).Google Scholar
16. Ru, O., Okamoto, M., Kondo, Y., Takayanagi, K., Chem. Phys. Lett. 259, 425 (1996).Google Scholar