Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T18:29:07.262Z Has data issue: false hasContentIssue false

One-Step Synthesis of Dithiocarbamates from Metal Powders

Published online by Cambridge University Press:  22 February 2011

Aloysius F. Hepp
Affiliation:
NASA Lewis Research Center, M.S. 302-1, Cleveland, OH 44135
David G. Hehemann
Affiliation:
School of Technology, Kent State University, Kent, OH 44242 Senior Research Fellow/NASA Lewis Research Center Resident Research Associate
Stan A. Duraj
Affiliation:
Department of Chemistry, Cleveland State University, Cleveland, OH 44115
Eric B. Clark
Affiliation:
NASA Lewis Research Center, M.S. 302-1, Cleveland, OH 44135
William E. Eckles
Affiliation:
Department of Chemistry, Cleveland State University, Cleveland, OH 44115
Phillip E. Fanwick
Affiliation:
Department of Chemistry, Purdue University, West Lafayette, IN 47907
Get access

Abstract

Neutral metal dithiocarbamate complexes (M(NR2CS2)x) are well-known precursors to metal sulfides, a class of materials with numerous technological applications. We are involved in a research effort to prepare new precursors to metal sulfides using simple, reproducible synthetic procedures. We describe the results of our synthetic and characterization studies for M = Fe, Co, Ni, Cu, and In. For example, treatment of metallic indium with tetramethylthiuramdisulfide (tmtd) in 4-methylpyridine (4-Mepy) at 25°C produces a new homoleptic indium (III) dithiocarbamate, In(N(CH3)2CS2)3 (I), in yields of over 60%. The indium (III) dithiocarbamate was characterized by X-ray crystallography; (I) exists in the solid state as discrete distorted-octahedral molecules. Compound (I) crystallizes in the Plbar (No. 2) space group with lattice parameters: a = 9.282(1) A, b = 10.08 1(1) Å, c = 12.502 Å, ∝ = 73.9 1(1)°, β = 70.21(1)°, γ = 85.84(1)°, and Z = 2. X-ray diffraction and mass spectral data were used to characterize the products of the analogous reactions with Fe, Co, Ni, and Cu. We discuss both use of dithiocarbamates as precursors and our approach to their preparation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kazmerski, L.L. and Wagner, S., in Current Topics in Photovoltaics, edited by Coutts, T. J. and Meakin, J. D. (Academic Press, London, 1985) pp. 41109.Google Scholar
2. Maclnnes, A.N., Power, M.B., Barron, A.R., Jenkins, P.P., and Hepp, A.F., Appl. Phys. Lett. 62, 711 (1993).Google Scholar
3. Chevrel, R. and Sargent, M., Topp. Curr. Phys. 32, 25 (1982).Google Scholar
4. Weisser, O. and Landa, S., Sulfide Catalysts, Their Properties and Applications (Pergammon Press, New York, 1973).Google Scholar
5. Pitt, D.A., Rachu, M.L., and Sayhun, M.R.V., Photgr. Sci Eng. 25, 57 (1981).Google Scholar
6. Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, 5th ed. (John Wiley and Sons, New York, 1988).Google Scholar
7. Hirpo, W., Dhingra, S., Sutorik, A., and Kanatzidis, M.G., J. Am. Chem. Soc. 115, 1597 (1993).Google Scholar
8. Basol, B.M., Kapur, V.K., Halani, A., and Leidholm, C., Solar Energy Materials and Solar Cells 29, 163 (1993).Google Scholar
9. Tabib-Azar, M., Kang, S., MacInnes, A.N., Power, M.B., Barron, A.R., Jenkins, P.P., and Hepp, A.F., Appl. Phys. Lett. 63, 625 (1993).Google Scholar
10. See the following extensive reviews: Coucouvanis, D., Prog. Inorg. Chem. 11, 233 (1970); D. Coucouvanis, Prog. Inorg. Chem. 26, 301 (1979).Google Scholar
11. Tetsumi, T., Sumi, M., Tanaka, M., and Shano, T., Polyhedron 4, 707 (1985).Google Scholar
12. Tetsumi, T., Sumi, M., Tanaka, M., and Shano, T., Polyhedron 5, 707 (1986).Google Scholar
13. Dymock, K., Palenik, G.J., Slezak, J., Raston, C.L., and White, A.H., J. Chem. Soc., Dalton Trans., 28 (1976).Google Scholar
14. O'Connor, B.H. and Maslen, E.N., Acta. Cryst. 21, 828 (1966).Google Scholar
15. Kumar, R., Mabrouk, H.E., and Tuck, D.G., J. Chem. Soc., Dalton Trans., 1045 (1988).Google Scholar
16. Speier, G. and Fulop, V., J. Chem. Soc., Dalton Trans., 2331 (1989).Google Scholar
17. Ramli, E., Rauchfuss, T.B., and Stem, C.L., J. Am. Chem. Soc. 112, 4043 (1990).Google Scholar
18. Dev, S., Ramli, E., Rauchfuss, T.B., and Wilson, S.R., Inorg. Chem. 30, 2514 (1991).Google Scholar
19. Andras, M.T., Hepp, A.F., Duraj, S.A., Clark, E.B., Scheiman, D.A., Hehemann, D.G., and Fanwick, P.E., Inorg. Chem. 32, 4150 (1993).Google Scholar
20. Handbook of Chemistry and Physics, edited by Weast, R.C., 55th ed. (Chemical Rubber Company Press, Cleveland, OHH, 1974).Google Scholar
21. Gelling, I.R., Rubber Chemistry and Technology 46, 524 (1973).Google Scholar
22. Frigo, D.M., Khan, O.F.Z., and O'Brien, P., J. Cryst. Growth 96, 989 (1989).Google Scholar
23. Hursthouse, M.B., Malik, M.A., Motevalli, M., and O'Brien, P., Polyhedron 11, 45 (1992).Google Scholar
24. Hursthouse, M.B., Malik, M.A., Motevalli, M., and O'Brien, P., Organometallics 10, 730 (1991).Google Scholar
25. Malik, M.A. and O'Brien, P., Chem. Mater. 3, 999 (1991).Google Scholar
26. Malik, M.A., Motevalli, M., Walsh, J.R., and O'Brien, P., Organometallics 11, 3136 (1992).Google Scholar
27. Powell, Q., Gurav, A., Kodas, T.T., Hampden-Smith, M.J., Zeng, D., and Wang, M.L., submitted.Google Scholar
28. Zeng, D., Hampden-Smith, M.J., Alam, T.M., and Rheingold, A.L., submitted.Google Scholar
29. Nomura, R., Seki, S., and Matsuda, H., J. Mater. Chem. 2, 765 (1992).Google Scholar