Skip to main content Accessibility help

On the Sol-gel Synthesis and Characterization of Titanium Oxide Nanoparticles

  • Varun Chaudhary (a1), Amit K. Srivastava (a1) and Jitendra Kumar (a1)


TiO2 nanoparticles have been prepared by sol-gel process using titanium isopropoxide as a precursor with ethanol and water as solvents. The synthesis involves gel formation, digestion for 24h, drying at 100oC for 10h, and calcination in air at 500-800oC for 2h. The resulting powder has been studied with respect to phase(s), morphology, optical absorption and photo -luminescence (PL) behaviour. The calcination of dried sol-gel product at 500oC for 2h leads to formation of anatase phase that possesses a tetragonal structure (a = 3.785 Å, c = 9.514 Å, Z = 4), average crystallite size ~ 11 nm and band gap of 3.34 eV. Further, increasing the time (t) of calcination causes crystallite growth that follows the relation d = α – β exp (-t/τ), α = 18.1 nm, β = 9.6 nm and τ = 6.9h. However, calcination of sol-gel product at 800oC for 2h gives rise to a rutile phase (tetragonal a = 4.593Å, c = 2.959Å, Z = 2), average crystallite size ~ 25 nm and band gap of 3.02 eV. The anatase phase exhibits strong PL emission peaks (excitation wavelength 405 nm) at 2.06 and 1.99 eV due to defect levels within the energy band gap. This observation has been attributed to finite size effects occurring in nanoparticles.


Corresponding author



Hide All
1. Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., Chem. Rev. 95, 69–96 (1995).
2. Pierre, A. C., Ceramic Bulletin 70, 1281–1288 (1991).
3. Diebold, U., Surface Science Reports 48, 53–229 (2003)
4. Kingon, A. I., Maris, J. P. and Steiffer, S. K., Nature (London) 406, 1032 (2000)
5. Muscat, J., Swamy, V. and Harrism, N. M., Physical Review B 65, 224112–15 (2002)
6. Ohkoshi, S., Tsunobuchi, Y., Matsuda, T., Hashimoto, K., Namai, A., Hakoe, F. and Tokoro, H., Nature Chemistry 2, 539–545 (2010).
7. Grätzel, M.. J. Photochem Photobio. A Chem, 164, 3–14 (2004); C R Chimie 9, 578–83 (2006)
8. Hagfeldt, A. and Grätzel, M., Acc. Chem Res 33, 269–77 (2000).
9. Park, N.G., van de Lagemaat, J. and Frank, A. J., J. Phys. Chem. B 104, 8989–8994 (2000).
10. Wang, W., Gu, B. H., Liang, L. Y., Hamilton, W. A. and Wesolowski, D.J., J. Phys. Chem. B 108, 14789–92 (2004)
11. Bhanwala, A. K., Kumar, A., Mishra, D. P. and Kumar, J., Aerosol Science 40, 720–730 (2009).
12. Wang, C. C., Zhang, Z. and Ying, J.Y., Nano Structured Mater. 9, 583 (1997)
13. Chowdhury, A. and Kumar, J., Mater. Sci. Technol. 22, 1249–1254 (2006).
14. Amlouk, A., Mir, L., Kraiem, S. and Alaya, S., J. Phys. and Chem. of Solids 67, 1464–68 (2006)
15. Spurr, R. A. and Myers, H.. Anal. Chem. 29, 760, (1957)
16. Kitazawa, S., Choi, Y. and Yamamoto, S., Vacuum 74, 637 (2004)
17. Madhu Kumar, P., Badrinarayanan, S., Sastry, Murali, Thin solid films 358, 122–130, (2000)
18. Jin, Y., Li, G., Zhang, Y. and Zhang, L., J. Phys. D: Appl. Phys. 35, 37–40 (2002)


On the Sol-gel Synthesis and Characterization of Titanium Oxide Nanoparticles

  • Varun Chaudhary (a1), Amit K. Srivastava (a1) and Jitendra Kumar (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed