Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T13:33:19.037Z Has data issue: false hasContentIssue false

On the Role of Interfacial Defect Sites During Solid Phase Epitaxial Regrowth of Implantation Amorphized Silicon

Published online by Cambridge University Press:  26 February 2011

W. O. Adekoya
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UA du CNRS n'292) F-67037 STRASBOURG CEDEX (France)
M. Hage-Ali
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UA du CNRS n'292) F-67037 STRASBOURG CEDEX (France)
J. C. Muller
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UA du CNRS n'292) F-67037 STRASBOURG CEDEX (France)
P. Siffert
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UA du CNRS n'292) F-67037 STRASBOURG CEDEX (France)
Get access

Abstract

We have studied the solid phase epitaxial regrowth (SPER) of implantation (31P+11B+ (73Ge+ preamorphized)) amorphized silicon in the temperature range 500–600°C induced by Rapid Thermal Annealing (RTA) using Rutherford Backscattering and channeling measurements (RBS). Our results show rate enhancements (≃ 3.5–6.5) of the velocities of regrowth in all studied cases with respect to literature-reported values for furnace-induced SPER. Also, the ratio VB/VP (velocity of regrowth in the presence of boron with respect to phosphorus) gives a value of approximately 3 in both RTA and furnace-induced kinetics. These results are explained by a model which takes into account the role of electrically-active interfacial defect sites during SPER.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

/1/ Csepregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 48, 4234 (1977).Google Scholar
/2/ Csepregi, L., Kennedy, E.F., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
/3/ Suni, I., Goltz, G., Grimaldi, M.G., Nicolet, M.A. and Lau, S.S., Appl. Phys. Lett. 40, 269 (1982) ; Thin Solid Films 93, 171 (1982).Google Scholar
/4/ Narayan, J., J. Appl. Phys. 53, 8607 (1982).Google Scholar
/5/ Williams, J.S. and Elliman, R.G., Phys. Rev. Lett. 51, 1069 (1983).Google Scholar
/6/ Chu, W.K., Mayer, J.W. and Nicolet, M.A., Backscattering Spectrometry, Academic Press, New York (1978).Google Scholar
/7/ Olson, G.L. and Roth, J.A., US-Japan Seminar on Solid Phase Epitaxy and Interface Kinetics, Oisi, Japan (1983).Google Scholar
/8/ Lietola, A., Wakita, A., Sigmon, T.W. and Gibbons, J.F., J. Appl. Phys. 53, 4399 (1982).Google Scholar
/9/ Adekoya, W.O., Hage-Ali, M., Muller, J.C. and Siffert, P., Appl. Phys. Lett. 50, 1736 (1987) ; J. Appl. Phys. (submitted for publication).Google Scholar
/10/ Aleksandrov, L.N., Vacuum Vol.36, 455 (1986).Google Scholar