Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T11:42:32.756Z Has data issue: false hasContentIssue false

On The Origin of The Coarse and Fine Contrast Modulation in Epitaxial InGaAs Strained Layers Grown On InP Substrates.

Published online by Cambridge University Press:  15 February 2011

F. PeirÓ
Affiliation:
EME, Enginyeria i Materials Electrònics. Dept. Física Aplicada i Electrònica. Universitat de Barcelona. Ada. Diagonal 645-647. 08028 Barcelona, Spain
A. Cornet
Affiliation:
EME, Enginyeria i Materials Electrònics. Dept. Física Aplicada i Electrònica. Universitat de Barcelona. Ada. Diagonal 645-647. 08028 Barcelona, Spain
P. Roura
Affiliation:
EME, Enginyeria i Materials Electrònics. Dept. Física Aplicada i Electrònica. Universitat de Barcelona. Ada. Diagonal 645-647. 08028 Barcelona, Spain
J.R. Morante
Affiliation:
EME, Enginyeria i Materials Electrònics. Dept. Física Aplicada i Electrònica. Universitat de Barcelona. Ada. Diagonal 645-647. 08028 Barcelona, Spain
Get access

Abstract

In this paper we summarise the TEM observations carried out on InxGa1-xAs strained layers grown by Molecular Beam Epitaxy on (100) InP substrates (xIn in the range 54.3%-62.5%). The evolution of the modulation wavelength with the epilayer thickness, growth temperature (Tg) and layer-substrate strain is reported. The quantification of the amplitude of the composition variation linked to the coarse contrast modulation from the theoretical fitting of the Optical Absorption spectra is also presented. In view of these results we suggest a model for the appearance of the contrast modulations in ternary and quaternary III-V alloys according to the different structural configurations driven by the alloy stabilisation inside the miscibility gap due to the minimization of the free Gibbs energy as Tg increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Glas, F.. Communication A4 presented in the “9th International Conferenceon Microscopy of Semiconducting Materials”, Oxford (March 1995). To be published in Inst. Phys. Conf. Ser. (1995).Google Scholar
[2] Lee, K., Johnson, W.C. and Mahajan, S.. Com. F1 in the “9th Int. Conf. on Microscopy of Semiconducting Materials”, Oxford (March 1995). To be published in Inst. Phys. Conf. Ser. Google Scholar
[3] Norman, A.G. and Booker, G.R.. J. AppL. Phys. 57, 4716 (1985).Google Scholar
[4] Glas, F.. NATO ASI Series B203, 217, Plenum Press, New York (1989).Google Scholar
[5] McDevitt, T.L., Mahajan, S., Laughlin, D.E., Bonner, W.A. and Keramidas, V.G.. Phys. Rev. 845, 6614 (1992).Google Scholar
[6] McDevitt, T.L., Mahajan, S., Laughlin, D.E., Bonnerand, W.A. Keramidas, V.G.. Inst. Phys. Conf. Ser. 117, 477 (1991).Google Scholar
[7] Peiró, F., Comet, A. and Morante, J.R., to be published in Appl. Phys. Lett. 66 (18), (May 1995).Google Scholar
[8] Weisbuch, C., J. Cryst. Growth 127, 742 (1993).Google Scholar
[9] Clark, S.A., McDonald, J.E., Westwood, D.I. and Williams, R.H.. J. Cryst. Growth 121, 743 (1992).Google Scholar
[10] Treacy, M.M., Gibson, J.M. and Howie, A.. Philos. Mag. A51, 389 (1985).Google Scholar
[11] Kakibayashi, H. and Nagata, F.. Jpn. J. Appl. Phys. 24, L905 (1985).Google Scholar
[12] Roura, P., Bosch, J., Clark, S.A., Peiró, F., Comet, A., Morante, J.R. and Williams, R.H.. Submitted to J. Electr. Mat. Google Scholar
[13] Glas, F.. Inst. Phys. Conf. Ser. 134, 269 (1993).Google Scholar
[14] Seong, T.Y., Booker, G.R. and Norman, A.G.. Proc. of the Int. Conf. on Microsc. Sem. Mat. Paper PI-21 Oxford (1993). Inst. Phys. Conf. Ser. 134, 301 (1993).Google Scholar
[15] Boyce, J.B. and Mikkelsen, J.C. Jr., J. Cryst. Growth 98, 37 (1989).Google Scholar
[16] Ichimura, M. and Sasaki, A.. J. Cryst. Growth 98, 18 (1989).Google Scholar
[17] Ferreira, L.G., Wei, S.H. and Zunger, A.. Phys. Rev. B 40, 3197 (1989).Google Scholar
[18] Stringfellow, G.B. and Chen, G.S.. J. Vac. Sci. Technol. B9, 2182 (1991).Google Scholar