Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T08:46:36.944Z Has data issue: false hasContentIssue false

On the Origin of Color Degradation in Polyfluorenes – Block Copolymer Approach for Stable Blue Light Emission

Published online by Cambridge University Press:  01 February 2011

Christos L. Chochos
Affiliation:
Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Processes (FORTH-ICEHT), P.O. Box 1414, Patras 26500, Greece. Department of Chemistry, University of Patras, Patras 26500, Greece.
Joannis K. Kallitsis
Affiliation:
Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Processes (FORTH-ICEHT), P.O. Box 1414, Patras 26500, Greece. Department of Chemistry, University of Patras, Patras 26500, Greece.
Vasilis G. Gregoriou*
Affiliation:
Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Processes (FORTH-ICEHT), P.O. Box 1414, Patras 26500, Greece.
*
* Corresponding author. Phone: (+30)2610–965205. Fax: (+30)2610–965223.
Get access

Abstract

Spectroscopic studies on a series of rod-coil block copolymers with terfluorene as the rigid segment demonstrate that the main cause of color instability in fluorene oligomers and polymers is aggregate and/or excimer formation and not the presence of keto defects alone (fluorenone formation) along the molecular chain. Keto defects when are present contribute to the appearance of the undesirable ‘green’ emission band but are not the leading cause of color instability. Thus, the synthesis of materials where aggregation and/or inter-chain, inter-segment interactions are inhibited is the key approach for the production of stable polymeric light-emitting devices (PLED's). The potential of this method is verified by the synthesis of photo-oxidative stable fluorene/styrene diblock copolymer blue emitters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Leclerc, M., J. Polym. Sci. Part A: Polym. Chem. 39, 2867 (2001).Google Scholar
b) Neher, D., Macromol. Rapid. Commun. 22, 1365 (2001).Google Scholar
c) Scherf, U., List, E. J. W., Adv. Mater. 14, 477 (2002).Google Scholar
2. Marsitzky, D., Vestberg, R., Blainey, P., Tang, B. Y., Hawker, C. J., Carter, K. R., J. Am. Chem. Soc. 123, 6965 (2001).Google Scholar
3. Pogantsch, A., Wenzl, F. P., List, E. J. W., Leising, G., Grimsdale, A. C., Müllen, K., Adv. Mater. 14, 1061 (2002).Google Scholar
4. Bliznyuk, V. N., Carter, S. A., Scott, J. C., Klaerner, G., Miller, R. D., Miller, D. C., Macromolecules 32, 361 (1999).Google Scholar
5. a) Culligan, S. W., Geng, Y., Chen, S. H., Klubek, K., Vaeth, K. M., Tang, C. W., Adv. Mater. 15, 1176 (2003).Google Scholar
b) Geng, Y., Trajkovska, A., Katsis, D., Ou, J. J., Culligan, S. W., Chen, S. H., J. Am. Chem. Soc. 124, 8337 (2002).Google Scholar
6. Craig, M. R., de Kok, M. M., Hofstraat, J. W., Schenning, A. P. H. J., Meijer, E. W., J. Mater. Chem. 13, 2861 (2003).Google Scholar
7. Kulkarni, P., Jenekhe, S. A., Macromolecules 36, 5285 (2003).Google Scholar
8. a) Romaner, L., Pogantsch, A., Scandiucci de Freitas, P., Scherf, U., Gaal, M., Zojer, E., List, E. J. W., Adv. Funct. Mater. 13, 597 (2003).Google Scholar
b) List, E. J. W., Guntner, R., Scandiucci de Freitas, P., Scherf, U., Adv. Mater. 14, 374 (2002).Google Scholar
c) Gaal, M., List, E. J. W., Scherf, U., Macromolecules 36, 4236 (2003).Google Scholar
d) Gong, X., Iyer, P. K., Moses, D., Bazan, G. C., Heeger, A. J., Xiao, S. S., Adv. Funct. Mater. 13, 325 (2003).Google Scholar
9. a) Sims, M., Bradley, D. D. C., Ariu, M., Koeberg, M., Asimakis, A., Grell, M., Lidzey, D. G., Adv. Funct. Mater. 14, 765 (2004).Google Scholar
b) Chochos, C. L., Tsolakis, P. K., Gregoriou, V. G., Kallitsis, J. K., Macromolecules 37, 2502 (2004).Google Scholar
c) Surin, M., Hennebicq, E., Ego, C., Marsitzky, D., Grimsdale, A. C., Müllen, K., Bredas, J.–L., Lazzaroni, R., Leclere, P., Chem. Mater. 16, 994 (2004).Google Scholar
d) Lu, S., Fan, Q.-L., Chua, S.-J., Huang, W., Macromolecules 36, 304 (2003).Google Scholar
10. Müllen, K., Wegner, G., in Electronic Materials: The Oligomer Approach, (Wiley-VCH, Weinheim, 1998).Google Scholar
11. Inbasekaran, M., Wu, W., Woo, E. P., U.S. Patent No. 5777070 (7 July 1998).Google Scholar
12. Tsolakis, P. K., Kallitsis, J. K., Chem. Eur. J. 9, 936 (2003).Google Scholar
13. Chochos, C. L., Kallitsis, J. K., Gregoriou, V. G., submitted for publication.Google Scholar
14. Gamerith, S., Gadermaier, C., Scherf, U., List, E. J. W., phys. stat. sol. (a) 201, 1132 (2004).Google Scholar
15. a) Suzuki, T., Li, Q., Khemani, K. C., Wudl, F., Almarson, O., Science 254, 1186 (1991).Google Scholar
b) Hirsch, A., Soi, A., Karfunkel, H. R., Angew. Chem. 104, 808 (1992); Angew. Chem. Int. Ed. Engl., 31, 766 (1992).Google Scholar
16. List, E. J. W., Guentner, R., Scandiucci de Freitas, P., Scherf, U., Adv. Mater. 14, 373 (2002).Google Scholar