Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-03T20:52:58.805Z Has data issue: false hasContentIssue false

On the nucleation of GaP/GaAs and the effect of buried stress fields

Published online by Cambridge University Press:  01 February 2011

João Guilherme Zelcovit
Affiliation:
monica@ifi.unicamp.br, Unicamp, DFA, CP6165, Campinas, São Paulo, 13081-790, Brazil, 55-19-37885338, 55-19-37885343
José Roberto R. Bortoleto
Affiliation:
jrborto@sorocaba.unesp.br, Unicamp, DFA, Brazil
Jefferson Bettini
Affiliation:
bettini@lnls.br, LNLS, LME, Brazil
Mônica Cotta
Affiliation:
monica@ifi.unicamp.br, Unicamp, DFA, Brazil
Get access

Abstract

We have recently shown that spatial ordering for epitaxially grown InP dots can be obtained using the periodic stress field of compositional modulation on the InGaP buffer layer. The aim of this present work is to study the growth of films of GaP by Chemical Beam Epitaxy (CBE), with in-situ monitoring by Reflection High Energy Electron Diffraction (RHEED), on layers of unstressed and stressed GaAs. Complementary, we have studied the role of a buried InP dot array on GaP nucleation in order to obtain three-dimensional structures. In both cases, the topographical characteristics of the samples were investigated by Atomic Force Microscopy (AFM) in non-contact mode. Thus vertically-coupled quantum dots of different materials have been obtained keeping the in-place spatial ordering originated from the composition modulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For a review, see, for example, Shchukin, V., and Bimberg, D., Rev. Mod. Phys. 71, 1125 (1999).10.1103/RevModPhys.71.1125Google Scholar
[2] Lee, H., Johnson, J. A., He, M. Y., Speck, J. S., and Petroff, P. M., Appl. Phys. Lett. 78, 105 (2001).Google Scholar
[3] Lee, C.-S., Kahng, B., and Barabási, A.-L., Appl. Phys. Lett. 78, 984 (2001).Google Scholar
[4] Bortoleto, J. R. R., Gutiérrez, H. R., Cotta, M. A., Bettini, J., Cardoso, L. P., and de Carvalho, M. M. G., Appl. Phys. Lett. 82, 3523 (2003).10.1063/1.1572553Google Scholar
[5] Henoc, P., Izrael, A., Quilec, M., and Launois, H., Appl. Phys. Lett. 40, 963 (1982).Google Scholar
[6] LaPierre, R. R., Okada, T., Robinson, B. J., Thompson, D. A., and Weatherly, G. C., Cryst, J.. Growth 155, 1 (1995).10.1016/0022-0248(95)00123-9Google Scholar
[7] Perió, F., Cornet, A., Morante, J. R., Georgakilas, A., Wood, C. and Christou, A., Appl. Phys. Lett. 66, 2391 (1995).10.1063/1.113950Google Scholar
[8] Okada, T., Weatherly, G. C., and McComb, D. W., J. Appl. Phys. 81, 2185 (1997).10.1063/1.364271Google Scholar
[9] Guyer, J. E., Barnett, S. A., and Voorhees, P. W., J. Cryst. Growth 217, 1 (2000).10.1016/S0022-0248(00)00466-8Google Scholar
[10] Leónard, F. and Desai, R. C., Appl. Phys. Lett. 74, 40 (2002).10.1063/1.123126Google Scholar
[11] Huang, Z. F. and Desai, R. C., Phys Rev. B 65, 205419 (2002).10.1103/PhysRevB.65.205419Google Scholar
[12] Spencer, B. J., Voorhees, P. W., and Tersoff, J., Apll. Phys. Lett. 76, 3022 (2000).Google Scholar
[13] Spencer, B. J., Voorhees, P. W., and Tersoff, J., Phys. Rev. B 64, 235318 (2001).Google Scholar
[14] Bortoleto, J. R. R., Gutiérrez, H. R., Bettini, J., and Cotta, M. A., Appl. Phys. Lett. 87, 013105 (2005).10.1063/1.1953875Google Scholar
[15] Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995)10.1103/PhysRevLett.75.2542Google Scholar
[16] Medeiros-Ribeiro, G., Maltez, R. L., Bernussi, A. A., Ugarte, D. e de Carvalho, W. Jr, “Seeding of InP islands on InAs quantum dot templates”, J. Appl. Phys. 89, 6548 (2001).10.1063/1.1365939Google Scholar
[17] Leonard, D., Pond, K. e Petroff, P. M., “Critical layer thickness for self-assembled InAs islands on GaAs”, Phys. Rev. B 50, 11867 (1994).Google Scholar
[18] Kobayashi, N. P., Ramachandran, T. R., Chen, P. e Madhukar, A., “In situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001)”, Appl. Phys. Lett. 68, 3299 (1996).10.1063/1.116580Google Scholar
[19] Barabási, A. -L., “Thermodynamic and kinetic mechanisms in self-assembled quantum dot formation”, Mat. Sci. Eng. B67, 23 (1999).Google Scholar
[20] Suekane, O., Hasegawa, S., Takata, M., Okui, T. e Nakashima, H., “Scanning tunneling microscopy study of InAs islands grown on GaAs(001) substrates”, Mat. Sci. Eng. B 88, 158 (2002).10.1016/S0921-5107(01)00879-0Google Scholar
[21] Saito, H., Nishi, K. e Sugou, S., “Shape transition of InAs quantum dots by growth at high temperature”, Appl. Phys. Lett. 74, 1224 (1999).Google Scholar