Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-27T16:48:01.533Z Has data issue: false hasContentIssue false

On the Interface Structure of Buried CoSi2/Si(001) Layers and their Respective Schottky Barrier Heights

Published online by Cambridge University Press:  03 September 2012

P. Wemer
Affiliation:
MPL für Mikrostrukturphysik, D-06 120 Halle/Saale, Germany
W. Jäger
Affiliation:
Inst. für Feströkperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
A. Schüppen
Affiliation:
Inst. für Schicht- und Ionentechnik, Forschungszentrum J–lich, D-52425 J–lich, Germany
Get access

Abstract

This paper describes a high-resolution transmission electron microscope (HRTEM) study of the morphology and the atomic structure of CoSi2/Si(001) interfaces of continuous buried sulicide layers. These layers were produced by high-dose Co+ ion implantation and subsequent rapid thermal annealing. Planar interface regions of high perfection with domains of different atomic interface structure, and interface steps, frequently with I 111)I facets, were observed. There were significant differences in the interface structure between the upper and lower interfaces. Measuring Schottky barrier heights (SBH's) revealed different values for the upper (0.67eV) and lower (0.78eV) CoSi2/n-Si(001) interfaces. Possible correlations between the atomic interface structures and the resulting electronic properties are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. White, A.E., Short, K.T., Dynes, R.C., Garno, J.P., and Gibson, J.M., Mat.Res.Soc.Proc. 74, 481 (1987); Appl.Phys.Lett.50, 9 (1987).CrossRefGoogle Scholar
2. Bulle-Lieuwma, C.W.T., Ommen, A.H. van, and Ijzendoorn, L.J. van, Appl.Phys.Lett. 54, 244 (1989).CrossRefGoogle Scholar
3. Kohlhof, K., Mantl, S., Stritzker, B., and Jitger, W., Nucl.Inst.Meth.Phys.Res. B39, 276 (1989).CrossRefGoogle Scholar
4. Hull, R., Hsieh, Y.F., White, A.E., and Short, K.T., Mat.Res.Soc.Proc. 238, 543 (1992).CrossRefGoogle Scholar
5. Schüppen, A., Mantl, S., Vescan, L., Woiwod, S., Jebasinski, S., and Lüth, R., H., , Mat.Sci.Eng. B12, 157 (1992).CrossRefGoogle Scholar
6. Tung, R.T., Appl.Phys.Lett. 58, 2821 (1991).CrossRefGoogle Scholar
7. Tung, R.T., Levi, A.F., Sullivan, J.P., and Schrey, F., Phys.Rev.Letters 66, 72 (1991).CrossRefGoogle Scholar
8. Werner, P., Jäger, W., and Schüppen, A., J.Appl.Phys. 74, 3846 (1993).CrossRefGoogle Scholar
9. Hamann, D.R., Phys.Rev.Letters 60,313 (1988).CrossRefGoogle Scholar
10. Hull, R., Hsieh, Y.F., Short, K.T., White, A.E., and Chems, D., Mat.Res.Soc.Proc. 183, 91 (1990).CrossRefGoogle Scholar
11. Bulle-Lieuwma, C.T.W., PhD Thesis, Univ.Antwerpen, 1991.Google Scholar
12. Loretto, D., Gibson, J.M., and Yalisove, S.M., Thin Solid Films 184,309 (1990).CrossRefGoogle Scholar
13. Bulle-Lieuwma, C.W.T., DeJong, A.F., and Vandenhoudt, D.E.W., Phil.Mag. A64, 255 (1991).CrossRefGoogle Scholar
14. Werner, P., Hesse, D., Mattheis, R., Heydenreich, J., phys.stat.sol.al 16, 81 (1989).CrossRefGoogle Scholar
15. Cherns, D., Hetherington, C.J.D., and Humphreys, C.J., Phil.Mag. A49, 165 (1984).CrossRefGoogle Scholar
16. D'Heurle, F.M., and Gas, P., Mater.Res. 1,205 (1986).CrossRefGoogle Scholar
17. Mönch, W., Rep.Prog.Phys. 53,221 (1990).CrossRefGoogle Scholar
18. Vrijmceth, J., Veen, J.F. Van der, Heslinga, D.R., and Klapwijk, T.M., Phys.Rev.B 42, 9598 (1990).CrossRefGoogle Scholar