Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T17:23:13.480Z Has data issue: false hasContentIssue false

On the Diffusion of Oxygen Dimer in a Silicon Crystal

Published online by Cambridge University Press:  26 February 2011

Lawrence C. Snyder
Affiliation:
State University of New York, 1400 Washington Ave., Albany, N.Y. 12222
James W. Corbett
Affiliation:
State University of New York, 1400 Washington Ave., Albany, N.Y. 12222
Peter Deák
Affiliation:
State University of New York, 1400 Washington Ave., Albany, N.Y. 12222
Rongzhi Wu
Affiliation:
State University of New York, 1400 Washington Ave., Albany, N.Y. 12222
Get access

Abstract

We have made MINDO/3 calculations on a 47 silicon atom molecular cluster to model the diffusion of oxygen in silicon crystal. For interstitial oxygen (O1), we compute an activation energy for diffusion of 2.49 ev. We compute a binding energy of 0.1 ev. when two isolated interstitial oxygen atoms bond to a common silicon atom of the lattice. This complex (O2) is computed to move through the lattice with an activation energy of 1.36 ev. The diffusion path is through a four-member ring intermediate structure. We conclude that the diffusion constant for (O2) is eight orders of magnitude greater than that of (O1).

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

+ Permanent address:Physical Institute of the Technical University, Budapest H-1111 Budafoki ut 8. Hungary.Google Scholar
(1)Gosele, U. and Tan, T. Y., Appl. Phys. A28, 79 (1982).Google Scholar
(2)Lee, S.-Tong and Fellinger, P., Appl. Phys. Lett. 49, 1793 (1986).Google Scholar
(3)Stavola, M., Patel, J. R., Kimerling, L. C., and Freeland, P. E., Appl. Phys. Lett. 42, 73 (1983).Google Scholar
(4)Stavola, M. and Snyder, L. C., in “Defects in Silicon”, edited by Bullis, W. M. and Kimerling, L. C. (The Electrochem. Soc., Pennington, 1983) p.61.Google Scholar
(5)Snyder, L C. and Corbett, J. W., in “Oxygen, Carbon, Hydrogen and Nitrogen in Silicon” eds. Pearton, S. V., Corbett, J. W., Mikkelson, J. C. Jr, and Pennycock, S. J. (Material Res. Soc., Pittsburgh, 1986) p.207.Google Scholar
(6)Deak, P., Snyder, L C., Singh, R. K., and Corbett, J. W., Phys. Rev. B in print (1987).Google Scholar
(7)Deak, P. and Snyder, L. C., Phys. Rev. B in print (1987).Google Scholar
(8)Bingham, R. C., Dewar, M. J. S., and Lo, H. C., J. Am. Chem. Soc. 97, 1285 (1975).Google Scholar
(9)Edwards, A. H. and Fowler, W. B., J. Phys. Chem. Solids 46, 841 (1985).Google Scholar
(10)Deak, P., Snyder, L. C., and Corbett, J. W., Phys. Rev. B to be publishedGoogle Scholar
(11)Mikkelsen, J. C. Jr, in “Oxygen, Carbon, Hydrogen, and Nitrogen in Silicon” eds. Pearton, S. V., Corbett, J. W., Mikkelson, J. C. Jr, and Pennycock, S. J. (Material Res. Soc., Pittsburgh, 1986) p.19.Google Scholar
(12)Bourgoin, J. C. and Corbett, J. W., Phys. Lett. 38A, 135 (1972).Google Scholar
(13)Michel, J., Niklas, J. R., Spaeth, J.-M., and Weinert, C., Phys. Rev. Lett. 57, 611 (1986).Google Scholar