Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T15:08:33.223Z Has data issue: false hasContentIssue false

Ohmic Contacts to p-Type InGaAs/InP with a Graded Bandgap Heterobarrier

Published online by Cambridge University Press:  21 February 2011

Patrick W. Leech
Affiliation:
Telecom Australia Research Laboratories, Clayton, 3168, Victoria, Australia.
Geoffrey K. Reeves
Affiliation:
Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia.
Get access

Abstract

Ohmic contacts to p-type InP with an In0.47Ga0.53As buffer layer and an interposed superlattice of 50 Å In0.47Ga0.53As/ 50 Å InP have been investigated. Initial studies of contacts to In0.47Ga0.53As/ InP without the superlattice structure have shown that Pd/Zn/Pd/Au metallization produced a lower specific contact resistance (pc = 1.1 × 10−4 Ω cm2) than Pd/Ge/Au, and over a wider range of anneal temperature than Au/Zn/Au. The incorporation of the superlattice in the p-In0.47Ga0.53As/ InP structure resulted in Pd/Zn/Pd/Au contacts with pc of 3.2 × 10−5 Ω cm2 as-deposited and 7.5 × 10−6 Ω.cm2 after a 500 °C anneal. The presence of Pd/Zn in the metallization was shown as important in reducing pc. Significant intermixing of the metal layers and In0.47Ga0.53As occured at ≥ 350 °C, as revealed by Rutherford backscattering spectrometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wasserbauer, J.G. Bowers, J.E., Hafich, M.J., Silvestre, P., Woods, L.M. and Robinson, G.Y., Electron Lett., 28 (17), 1568, (1992).CrossRefGoogle Scholar
2 Chen, W.X., Hsueh, S.C., Yu, P.K. and Lau, S.S., IEEE Elec.Dev.Lett., EDL–7, 471, (1986).CrossRefGoogle Scholar
3 Shantharama, L.G., Schumacher, H., Leblanc, H.P., Esagui, R., Bhat, R. and Koza, M., Electron Lett., 26 (15), 1127, (1990).CrossRefGoogle Scholar
4 Ressel, P., Vogel, K., Fritzsche, D., and Mause, K., Electron Lett., 28 (24), 2237, (1992).CrossRefGoogle Scholar
5 Bruce, R., Clarke, D. and Eicher, S., J. Electron.Mat., 19 (3), 225, (1990).CrossRefGoogle Scholar
6 Ivey, D.G., Jian, P., Wan, L., Bruce, R., Eicher, S. and Blaauw, C., J. Electron. Mat., 20, (3), 237, (1991).CrossRefGoogle Scholar
7 Reeves, G.K. and Harrison, H.B., IEEE Elec.Dev.Lett., 1982, EDL–3, 111, (1982).CrossRefGoogle Scholar
8 Wakita, A., Moll, N., Fischer-Colbrie, A. and Stickle, W., J.Appl.Phys., 68 (6), 2833, (1990).CrossRefGoogle Scholar
9 Vanderberg, J., Temkin, H., Hamm, R. and Diguiseppe, M., Thin Sol.Films, 104, 419, (1983).CrossRefGoogle Scholar
10 Piotrowska, A., Kaminska, E., Kwiatkowski, S. and Turos, A., J.Appl.Phys., 73 (9), 4404, (1993).CrossRefGoogle Scholar
11 Johnson, M.J., Kuhn, K.J. and Darling, R.B., Appl.Phys.Lett., 58 (17), 1893, (1991).CrossRefGoogle Scholar