Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T21:18:40.791Z Has data issue: false hasContentIssue false

Ohmic Contact to n-GaN with TiN Diffusion Barrier

Published online by Cambridge University Press:  10 February 2011

E. Kamińska
Affiliation:
Institute of Electron Technology, Al.Lotników 46, Warszawa, Poland, eliana@ite.waw.pl
A. Piotrowska
Affiliation:
Institute of Electron Technology, Al.Lotników 46, Warszawa, Poland, eliana@ite.waw.pl
M. Guziewicz
Affiliation:
Institute of Electron Technology, Al.Lotników 46, Warszawa, Poland, eliana@ite.waw.pl
S. Kasjaniuk
Affiliation:
Institute of Electron Technology, Al.Lotników 46, Warszawa, Poland, eliana@ite.waw.pl
A. Barcz
Affiliation:
Institute of Electron Technology, Al.Lotników 46, Warszawa, Poland, eliana@ite.waw.pl
E. Dynowska
Affiliation:
Institute of Physics, PAS, Al.Lotników 46, Warszawa, Poland
M. D. Bremser
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907
O. H. Nam
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907
Get access

Abstract

The formation of n-GaN/Ti ohmic contacts with TiN diffusion barriers has been investigated by electrical measurements, x-ray diffraction and SIMS. It has been shown that the onset of the ohmic behaviour is associated with the thermally induced phase transformation of Ti into TiN at the GaN/Ti interface. It is suggested that the process is accompanied by an increase in the doping level in the semiconductor subcontact region. The presence of a TiN barrier is found to inhibit excessive decomposition of GaN and to confine the reaction between n-GaN and Ti.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lin, M.E., Ma, Z., Huang, F.Y., Fan, Z.F., Allen, L.H., Morkoc, H., Appl.Phys.Lett., 64, 1003 (1994).Google Scholar
2. Khan, M.A., Kuznia, J.N., Bhattarai, A.R., Olson, D.T., Appl.Phys.Lett., 62, 1786 (1993).Google Scholar
3. Guo, J.D., Lin, C.I., Feng, M.S., Pan, F.M., Chi, G.C., Lee, C.T., Appl. Phys. Lett., 68, 235 (1996).Google Scholar
4. Fan, Z., Mohammad, S.N., Kim, W., Aktas, O., Botchkarev, A.E., Morkoc, H., Appl. Phys. Lett., 68, 1672 (1996).Google Scholar
5. Morkoc, H., Proc. Int. Symp. Blue Laser and LEDs, Chiba Univ. Japan, 23 (1996).Google Scholar
6. Kumar, N., McGinn, J.T., Pourezaei, K., Lee, B., J. Vac. Sci. Technol., A6, 1602 (1988).Google Scholar
7. Schulte, J., Brodsky, S.B., Lin, T., Joshi, R.V., Tungsten and other refractory metals for VLSI applications, Mat. Res. Soc. 1987 Workshop Proc. 367 (1988)Google Scholar
8. Li, Jian, Chapman, P.F., Goodwin, F., Mat. Res. Soc. Conf. Proc. ULSI-VIII, 75 (1993).Google Scholar
9. Piotrowska, A., Kamińska, E., Guziewicz, M., Kwiatkowski, S., Turos, A., Mat. Res. Soc. Symp. Proc. 300, 219 (1993).Google Scholar
10. Weaks, T.W. Jr., Bremser, M.D., Ailey, K.S., Carlson, E., Perry, W.G., Piner, E.L., El-Masry, N.A., Davis, R.F., J. Mat. Res., 10, 1011 (1996).Google Scholar
11. Wittmer, M., J. Vac. Sci. Technol., A3, 1797 (1985).Google Scholar
12. Kowalczyk, S.P., Waldrop, J.R., Grant, R.W., Appl. Phys. Lett., 38, 167 (1981).Google Scholar
13. Fomenko, V.S., Emission Properties of Materials. Naukova Dumka, Kiev, 1981.Google Scholar
14. Nemanich, R.J., Benjamin, M.C., Bozeman, S.P., Bremser, M.D., King, S.W., Ward, B.L., Davis, R.F., Chen, B., Zhang, Z., Bernholc, J., Mat. Res. Soc. Symp. Proc. 395, 777 (1996).Google Scholar
15. Yu, A.Y.C., Solid-State Electronics, 13, 239 (1970).Google Scholar
16. Dingfen, W., Dening, W., Heime, K., Solid-State Electronics, 29, 489 (1986).Google Scholar