Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-19T19:46:30.093Z Has data issue: false hasContentIssue false

Observation of Random Telegraphic Noise in Large Area a-Si:H/a- Si1−x, Nx:H Double Barrier Structures

Published online by Cambridge University Press:  25 February 2011

R. Arce
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, Federal Republic of Germany
L. Ley
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

Random Telegraphic Noise (RTN) with an amplitude of about 1% has been observed in the current through a-Si:H/a-Si1−xNx.:H double barrier structures. The area of the devices, 0.25 mm2, is five orders of magnitude larger than the area of the devices where RTN has previously been observed. The power spectra of the noise can be fitted by a superposition of Lorentzians from which average switching times are deduced. The switching times are thermally activated with activation energies between 0.2 and 0.6 eV and depend on bias voltage. Assuming that the current through these structures is confined to microchannels of cross section area < lμm2 the RTN and its characteristics are explained by the random charging and discharging of individual traps placed in the vicinity of the current channel.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ralls, S., Skocpol, W.J., Jackel, L.D., Howard, R.E., Fetter, L.A., Epworth, R.W., and Tennant, D.M., Phys. Rev. Lett. 52, 228 (1984).CrossRefGoogle Scholar
2. Rogers, T. and Buhrman, R.A., Phys. Rev. Lett. 53, 1272 (1984).Google Scholar
3. Uren, J., Day, D.J., and Kirton, M.J., App. Phys. Lett. 58, 1195 (1985).CrossRefGoogle Scholar
4. Farmer, K.R., Rogers, C.T., and Buhrman, R.A., Phys. Rev. Lett. 58, 2255 (1987).CrossRefGoogle Scholar
5. Wakai, R.T. and Van Harlingen, D.J., Appl. Phys. Lett. 49, 596 (1986).Google Scholar
6. Rogers, C.T., Farmer, K.R., and Buhrman, R.A., 9th Int. Conf. on Noise in Physical Systems, edited by Viet, C.M. Van (World Scientific Publisher, Singapore), p. 293.Google Scholar
7. see Ley, e.g. L., in MRS Symposium Proceedings 118, 329 (1988).CrossRefGoogle Scholar
8. Miyazaki, S., Ihara, Y., and Hirose, M., Phys. Rev. Lett. 5, 125 (1987).Google Scholar
9. Pereyra, I., Carreno, M.N.P., Onmori, R.K., Sassaki, C.A., Andrade, A.M., and Alvarez, F., J. Non-Cryst. Solids 97&98, 871 (1987).CrossRefGoogle Scholar
10. Hundhausen, M., Santos, P., Ley, L., Habraken, F., Beyer, W., Primig, R., and Gorges, G., J. Appl. Phys. 61, 556 (1987).CrossRefGoogle Scholar
11. Evangelisti, F., J. Non-Cryst. Solids 77&78, 969 (1985).Google Scholar
12. Buckingham, M.J., Noise in Electronic Devices and Systems (Ellis Horwood Ltd. Pub., Chichester, 1983), p. 31.Google Scholar
13. Machlup, S., J. Appl. Phys. 37, 2823 (1966).Google Scholar
14. LeComber, P.G. et al. J. Non-Cryst. Solids 77&78, 1373 (1985).Google Scholar