Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-16T05:13:56.186Z Has data issue: false hasContentIssue false

Numerical Simulations of Coarsening of Lamellar Structures: Applications to metallic alloys

Published online by Cambridge University Press:  11 February 2011

Rifa J. El-Khozondar
Affiliation:
Department of Physics, Al-Aqsa University, Gaza
Hala J. El-Khozondar
Affiliation:
Department of Electrical Engineering, Islamic University, Gaza
Get access

Abstract

Understanding the microstructural evolution in metallic alloys helps to control their properties and improve their performance in industrial applications. The emphasis of our study is the coarsening mechanisms of lamellar structures.

Coarsening of lamellar structure is modeled numerically using Monte Carlo Potts method. The initial microstructure consists of alternating lamellae of phase A and phase B with the spacing proportional to their volume fraction. Faults are introduced to the lamellae to induce instability in the system. We find that an isotropic lamellar structure degenerates via edge spheroidization and termination migration into nearly equiaxed grains with a diameter which is 2 to 3 times larger than the original lamellar spacing. The duration of this process is comparable with the time it would take Ostwald ripening to produce grains of the same size. Eventually grain growth reaches the asymptotic regime of coarsening described by a power-law function of time. Lamellae with anisotropic grain boundaries coarsen more slowly and via discontinuous coarsening mechanism. This produces larger grains upon degeneration of lamellae. Discontinuous coarsening was observed in lamellar alloys as well as termination migration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tikare, V. and Gawley, J. D., J. Am. Ceram. Soc. 81, 485491 (1998a).Google Scholar
2. Mahis, K.W., Hanson, K. and Morrid, J. W. Jr, Acta Metall. 28, 443453 (1980).Google Scholar
3. Frost, H. J. and Thompson, C. V., Acta Metall. 35, 529540 (1987).Google Scholar
4. Ito, O. and Fuller, E. R. Jr, Acta Metall. 41, 191198 (1993).Google Scholar
5. Schule, E., Comput. Mater. Sci. 5, 277285 (1996).Google Scholar
6. Frost, H. J., Thompson, C. V., Howe, C. L. and Whang, J., Scr. Metal. 22, 6570 (1988).Google Scholar
7. Chaix, J. M., Guyon, M., Rodriguez, J. and Allibert, C. H., Scr. Metal. 22, 7176 (1988).Google Scholar
8. Ceppi, E. A. and Nasello, B. O., Scr. Metal. 12, 12211225 (1984).Google Scholar
9. Fan, D. and Chen, L. Q., J. Am. Ceram. 78, 16801686 (1995).Google Scholar
10. Nikolic, Z. and Huppmann, W., Acta Metall. 28, 475479 (1980).Google Scholar
11. Voorhees, P. W. and Glicksman, M. E., Acta Metall. 32, 20012011 (1984).Google Scholar
12. Voorhees, P. W. and Glicksman, M. E., Acta Metall. 32, 20132030 (1984).Google Scholar
13. Fortes, M. A. and Ferro, A. C., Acta Metall. 33, 16971708 (1985).Google Scholar
14. Anderson, M. P., Srolovitz, D. J., Grest, G. S. and Sahni, P. S., Acta Metall. 32, 783791 (1984).Google Scholar
15. Anderson, M. P., Grest, G. S. and Srolovitz, D. J., Phil. Mag. 59B, 293329 (1989).Google Scholar
16. Tikare, V. and Gawley, J. D., Acta Mater. 46, 13431356 (1998b).Google Scholar
17. Solomatov, V. S., El-Khozondar, R., Tikare, V., Phys. Earth Planet. Inter. 129, 265282 (2002).Google Scholar
18. Sharma, G., Ramanujan, R. V. and Tiwari, G. P., Acta Mater. 48, 875889 (2000).Google Scholar
19. Mullins, W. W., J. Appl. Phys. 28, 333339 (1957).Google Scholar
20. Mullins, W. W., Trans. AIME 218, 354361 (1960).Google Scholar
21. Cline, H. E., Acta Metall. 19, 481490 (1971).Google Scholar
22. Nakagawa, Y. G. and Weatherly, G. C., Acta Metall. 20, 345350 (1972).Google Scholar
23. Livingston, J. D. and Cahn, J. W., Acta Metall. 22, 495503 (1974).Google Scholar
24. Bartholomeusz, M. F. and Wert, J. A., Metall. Mater. Trans. A. 25A, 23712381 (1994).Google Scholar
25. Ramanujan, R. V., Maziasz, P. J. and Liu, C. T., Acta Mater. 44, 26112642 (1996).Google Scholar
26. Mitao, S. and Bendersky, L. A., Acta Mater. 45, 44754489 (1997).Google Scholar
27. El-Khozondar, R., Solomatov, V. S., Tikare, V., Mat. Res. Soc. Symp. Proc. 731, 16 (2002).Google Scholar