Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T02:38:33.270Z Has data issue: false hasContentIssue false

Numerical Simulation Of A Voltage-Dependent Surface-Induced Molecular Reorientation In A Confined Nematic Liquid Crystal

Published online by Cambridge University Press:  15 March 2011

J.J. Castro
Affiliation:
Departamento de Física, CINVESTAV del IPN Apdo. Postal 14-740, 07300 México, D.F.
A. Calles
Affiliation:
Departamento de Física, Facultad de Ciencias, UNAM Apdo. Postal 70-646, 04510 México, D.F.
R. M. Valladares
Affiliation:
Departamento de Física, Facultad de Ciencias, UNAM Apdo. Postal 70-646, 04510 México, D.F.
Get access

Abstract

We present a computer simulation of the voltage-dependent orientational ordering of a nematic liquid crystal within the lattice approximation, confined between two substrates with different anchoring for each surface. The system is studied by analyzing the response of the molecular reorientation near the surfaces as a function of the applied voltage. The model considers a molecular interaction responsible for the nematic phase that includes a superposition of the anisotropic induced-dipole-induced-dipole and isotropic Maier-Saupe interactions, whereas for the nematic-surface intermolecular interaction we assume the Rapini-Papoular form. The response to the external electric field is studied by calculating the dielectric constant tensor, based on a model through the molecular polarizability. We particularly discussed the case for negative dielectric anisotropy that could have relevance for the voltage controlled twist effect. The simulation is carried through a numerical relaxation method for the total energy of the system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bryan-Brown, G. P., Brown, C. V., Sage, I. C. and Hui, V. C., Nature, 392, 365 (1998).Google Scholar
2. Bryan-Brown, G. P., Wood, E. L. and Sage, I. C., Nature, 399, 338 (1999).Google Scholar
3. Skačej, G., Pergamenshchik, V. M., Alexe-Ionescu, A. L., Barbero, G. and Zumer, S., Phys. Rev., E56, 571 (1997).Google Scholar
4. Barbero, G., Evangelista, L.R. and Madhusudana, N. V., Eur. Phys. J. B1, 327 (1998).Google Scholar
5. Rajteri, M., Barbero, G., Galatola, P., Oldano, C. and Faetti, S., Phys. Rev. E53, 6093 (1996).Google Scholar
6. Calles, A., Valladares, R.M. and Castro, J.J., Mat. Res. Soc. Symp. Proc. 651, T719.1 (2001).Google Scholar
7. Maier, W. and Saupe, A., Z. Naturforsch. A14, 882 (1959); A15, 287 (1960).Google Scholar
8. Rapini, A. and Papoular, M., J. Phys. (France), Colloq. 30, C454 (1969).Google Scholar