Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T16:46:10.214Z Has data issue: false hasContentIssue false

Nucleation of Dislocations in SIGe Layers

Published online by Cambridge University Press:  21 February 2011

P.M. Mooney
Affiliation:
IBM Research Division, T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA
F.K. Legoues
Affiliation:
IBM Research Division, T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA
J.O. Chu
Affiliation:
IBM Research Division, T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA
Get access

Abstract

We present an x-ray diffraction study of the variation of the tilt angle between a relaxed Si1−xGex epitaxial layer and the Si (001) substrate. Such measurements provide the basis for a new method to determine the nucleation activation energy of misfit dislocations. We show that the nucleation activation energy for 60° dislocations in the case of the multiplication mechanism observed in graded SiGe layers grown by UHV-CVD at low temperature is 4 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For pertinent reviews see Merwe, J.H. van der and Ball, C.A.B., (p.494) and Matthews, J.W. (p.559), in Epitaxial Growth (Academic, New York, 1975).Google Scholar
2. LeGoues, F.K., Meyerson, B.S., and Morar, J.F., Phys. Rev. Lett. 66, 2903 (1991).CrossRefGoogle Scholar
3. Fitzgerald, E.A., Xie, Y.-H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.-J., and Weir, B.E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
4. LeGoues, F.K., Meyerson, B.S., Morar, J.F. and Kirchner, P.D., J. Appl. Phys. 71, 4230 (1992).Google Scholar
5. Meyerson, B.S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
6. Ayers, J.E., Ghandi, S.K., and Showalter, L.J., J. Crystal Growth 113, 430 (1991).CrossRefGoogle Scholar
7. LeGoues, F.K., Mooney, P.M., and Chu, J.O., Appl. Phys. Lett. 62, 140 (1993).CrossRefGoogle Scholar
8. LeGoues, F.K., Mooney, P.M. and Tersoff, J., Phys. Rev. Lett. 71, 396 (1993).CrossRefGoogle Scholar
9. , Hull, Bean, J.C., Werder, D.J., and Lelbenguth, R.E., Phys. Rev. B 40, 1681 (1989).Google Scholar
10. Houghton, D.C., Appl. Phys. Lett. 57, 2124 (1990).Google Scholar
11. Halliwell, M.A.G., Inst. of Physics. Conf. Ser. No. 60, 271 (1981).Google Scholar
12. Mooney, P.M., LeGoues, F.K., Chu, J.O., and Nelson, S.F., Appl. Phys. Lett. 62, 3464 (1993).CrossRefGoogle Scholar
13. Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 51 1325 (1987).Google Scholar
14. Mooney, P.M., LeGoues, F.K., Tersoff, J., and Chu, J.O., submitted to J. Appl. Phys.Google Scholar