Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T03:48:19.089Z Has data issue: false hasContentIssue false

Nuclear Magnetic Resonance Studies of Deuterium in Silicon

Published online by Cambridge University Press:  03 September 2012

Karen Carr Bustillo
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, USA
Eugene E. Haller
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, USA
Jeffrey A. Reimer
Affiliation:
Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA
Get access

Abstract

We report nuclear magnetic resonance measurements of deuterone diffused into silicon powders. Deuterium spectra show a two-component lineshape corresponding to two distinct hydrogen sites. The component with a narrow Lorentzian lineshape is assigned to D2 molecules. The second component is a quadrupolar doublet powder pattern, and its characteristic splitting provides a value of the electric field gradient at the site of the deuterium atom of 1.45×105 dyn/cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bloom, M., Physics of NMR Spectroscopy in Biology and Medicine (North Holland, Amsterdam, 1988), p. 145.Google Scholar
2. Bloom, M., Davis, J. H., Valic, M. I., Can. J. Phys. 58, 1510 (1980).CrossRefGoogle Scholar
3. Gerstein, B. C, Dybowski, C. R., Transient Techniques in NMR of Solids (Academic Press, Inc., Orlando, 1985), p. 121.Google Scholar
4. Ernst, R. R., Bodenhausen, G., Wokaun, A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987), p. 24.Google Scholar
5. Mokarram, M. and Ragle, J. L., J. Chem. Phys. 59, 2770 (1973).Google Scholar
6. Leopold, D. J., Boyce, J. B., Fedders, P. A., Norberg, R. E., Phys. Rev. B 26, 6053 (1982).Google Scholar
7. Bodart, J., Santos-Filho, P., Norberg, R. E., J. of Non-Cryst. Solids 114, 825 (1989).CrossRefGoogle Scholar
8. Zacher, R., Allen, L. C., Licciardello, D. C., J. of Non-Cryst. Solids 85, 13 (1986).Google Scholar
9. Van de Walle, C. G., in Hydrogen in Semiconductors, edited by Pankove, J. I. and Johnson, N. M. (Academic Press, Inc., San Diego, 1991), pp. 595597.Google Scholar
10. Chang, K. J., Chadi, D. J., Phys. Rev. Lett. 62, 937 (1989).CrossRefGoogle Scholar
11. Carrington, A., McLachlan, A. D., Introduction to Magnetic Resonance (Harper and Row, New York, 1968).Google Scholar
12. Lamotte, B., Phys. Rev. Lett. 53, 578 (1984).Google Scholar
13. Boyce, J. B. and Stutzmann, M., Phys. Rev. Lett. 54, 562 (1985).Google Scholar