Skip to main content Accessibility help

Novel Routes to Microwave Processing of Ceramic Materials

  • M. Willert-Porada (a1)


Material parameters important for microwave processing are identified in case of powder synthesis from precursor compounds and in case of sintering Al2O3- as well as SiC-matrix ceramics. By varying the spatial distribution of the precursor in microwave transparent materials, different pyrolysis temperatures are obtained, which can be attributed to different heating rates due to selective microwave heating. The microwave sintering behavior of oxide ceramics is strongly influenced by the specific surface area of the powder and by aliovalent dopants. In contrast, for covalent ceramics, like SiC+TiC, no experimental evidence for similar effects was obtained.



Hide All
1. Sutton, W.H., “Microwave Processing of Ceramics”, Bull. Am. Cer. Soc., 68(2), 376 (1989)
2. Sutton, W.H., “Microwave Processing of Ceramics - An Overview” in Microwave Processing of Materials III, edited by Beatty, R.L., Sutton, W.H. and Iskander, M.F. (Mater. Res. Soc. Proc. 269, Pittsburgh, PA, 1992) pp. 320.
3. Thomas, J.J., Christensen, R.J., Johnson, D.L. and Jennings, H.M., “Nonisothermal Microwave Processing of Reaction-Bonded Silicon Nitride”, J. Am. Ceram. Soc., 76 (5), 13841386 (1993).
4. Palaith, D., Silberglitt, R., “Microwave Joining of Ceramics”, Bull. Am. Cer. Soc., 68(9), 1601 (1989).
5. Willert-Porada, M., Gerdes, T., Vodegel, S., “Metalorganic and Microwave Processing of Cermets”, in Ref. 2, 205210 (1992).
6. Kriegsmann, G.A. and Varatharajah, P., “Formation of Hot Spots in Microwave Heated Ceramic Rods”, in Microwaves: Theory and Application in Materials Processing II, edited by Clark, D.E., Tinga, W.R. and Laia, J.R. (Ceram. Trans. 36, 1993), pp 221228.
7. Willert-Porada, M., “Reaction Rate Controlled Microwave Processing of Ceramic Materials”, in Ref. 6, 277286 (1993).
8. Vodegel, S., “Microwave Sintering of Alumina Ceramics”, PhD thesis, University Dortmund (F.R. Germany) 1993.
9. De, A., Ahmad, I., Whitney, E.D., and Clark, D.E., “Microwave (Hybrid) Heating of Alumina at 2.45 GHz”, in Microwaves: Theory and Application in Materials Processing, edited by Clark, D.E., Gac, F.D., and Sutton, W.H. (Ceram. Trans. 21, 1991), pp 319328 and 329–339.
10. Willert-Porada, M., Fischer, B., and Gerdes, T., “Application of Microwave Heating to Combustion Synthesis and Sintering of Al2O3-TiC Ceramics”, in Ref. 6, 365375 (1993).
11. Gerdes, T., and Willert-Porada, M., “Microwave Sintering of Metal-Ceramic and Ceramic- Ceramic Composites”, this volume.
12. Willert-Porada, M., Krummel, T., Rohde, B., and Moormann, D., “Ceramic Powders Generated by Metalorganic and Microwave Processing”, in Ref. 2, 199204 (1992).
13. Willert-Porada, M., “Metalorganic and Microwave Processing of Monolithic and Polyphasic Ceramics”, in Ref. 2, 193198 (1992).
14. Liebertz, H., MSc thesis, University Dortmund, 1991.
15. Willert-Porada, M., Dennhöfer, S., Hachmeister, D., “Microwave Pyrolysis of Emulsified Ceramic Precursor Compounds”, this volume.
16. Willert-Porada, M., unpublished results.
17. Willert-Porada, M., Vodegel, S., German Pat. Appl. P 42 24 974.0 (1992)
18. Willert-Porada, M., “Microwave Processing of Metalorganics to Form Powders, Compacts, and Functional Gradient Materials”, MRS Bull., Vol. XVIII (11), 5157 (1993)
19. Borchert, R., MSc. thesis, University Dortmund, 1993.
20. Janney, M. A. and Kimrey, H.D., “Microwave Sintering of Alumina at 28 GHz”, Ceram. Trans 1, 919924 (1988).
21. Katz, I.D., Blake, R.D., and Kenkre, V.M., “Microwave Enhanced Diffusion?”, in Ref. 9, 95105 (1991).
22. Vodegel, S., Hannappel, S., Willert-Porada, M., “Microstructure Evolution in Microwave Sintered Alumina”, Metall, 48 (3), 206210 (1994).
23. Moreno, R., Miranzo, P., Requena, J., Moya, J.S., Molla, J., and Ibarra, A., “Effect of Powder Characteristics on Dielectric Properties of Alumina Compacts”, in Ref. 9, 225232 (1991).
24. Toropov, N. A., Vasilewa, V.A., Doki. Akad. Nauk SSSR, 152, 13791382, (1963) for SC2O3-AI2O3; Phase Diagramms for Ceramists, Fig. 4377, 4378, 6452, for Zr02-Al2O3.
25. Nowick, A. S., Diffusion in Crystalline Solids, Academic Press (1984), pp. 143188.
26. Willert-Porada, M., Borchert, R., Gerdes, T., “Microwave Sintering of Dispersion Ceramics”, Proc. of Annual Meeting of DKG, Weimar 1993.
27. Johnson, D.L., “Microwave Heating of Grain Boundaries in ceramics”, J. Am. Ceram. Soc., 74, 849 (1991).
28. Young, R. M. and McPherson, R., “Temperature Gradient Driven Diffusion in Rapid-Rate Sintering”, J. Am. Ceram. Soc., 72, 1080 (1989).
29. Weiler, M. and Schubert, H., “Internal Friction, Dielectric Loss, and Ionic Conductivity of Tetragonal ZrO2-3%Y2O3 (Y-TZP)”, J. Am. Ceram. Soc., 69, 573577 (1986).

Related content

Powered by UNSILO

Novel Routes to Microwave Processing of Ceramic Materials

  • M. Willert-Porada (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.